55 research outputs found

    AN INVESTIGATION OF ELECTROMYOGRAPHIC (EMG) CONTROL OF DEXTROUS HAND PROSTHESES FOR TRANSRADIAL AMPUTEES

    Get PDF
    In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of Plymouth University's products or services.There are many amputees around the world who have lost a limb through conflict, disease or an accident. Upper-limb prostheses controlled using surface Electromyography (sEMG) offer a solution to help the amputees; however, their functionality is limited by the small number of movements they can perform and their slow reaction times. Pattern recognition (PR)-based EMG control has been proposed to improve the functional performance of prostheses. It is a very promising approach, offering intuitive control, fast reaction times and the ability to control a large number of degrees of freedom (DOF). However, prostheses controlled with PR systems are not available for everyday use by amputees, because there are many major challenges and practical problems that need to be addressed before clinical implementation is possible. These include lack of individual finger control, an impractically large number of EMG electrodes, and the lack of deployment protocols for EMG electrodes site selection and movement optimisation. Moreover, the inability of PR systems to handle multiple forces is a further practical problem that needs to be addressed. The main aim of this project is to investigate the research challenges mentioned above via non-invasive EMG signal acquisition, and to propose practical solutions to help amputees. In a series of experiments, the PR systems presented here were tested with EMG signals acquired from seven transradial amputees, which is unique to this project. Previous studies have been conducted using non-amputees. In this work, the challenges described are addressed and a new protocol is proposed that delivers a fast clinical deployment of multi-functional upper limb prostheses controlled by PR systems. Controlling finger movement is a step towards the restoration of lost human capabilities, and is psychologically important, as well as physically. A central thread running through this work is the assertion that no two amputees are the same, each suffering different injuries and retaining differing nerve and muscle structures. This work is very much about individualised healthcare, and aims to provide the best possible solution for each affected individual on a case-by-case basis. Therefore, the approach has been to optimise the solution (in terms of function and reliability) for each individual, as opposed to developing a generic solution, where performance is optimised against a test population. This work is unique, in that it contributes to improving the quality of life for each individual amputee by optimising function and reliability. The main four contributions of the thesis are as follows: 1- Individual finger control was achieved with high accuracy for a large number of finger movements, using six optimally placed sEMG channels. This was validated on EMG signals for ten non-amputee and six amputee subjects. Thumb movements were classified successfully with high accuracy for the first time. The outcome of this investigation will help to add more movements to the prosthesis, and reduce hardware and computational complexity. 2- A new subject-specific protocol for sEMG site selection and reliable movement subset optimisation, based on the amputee’s needs, has been proposed and validated on seven amputees. This protocol will help clinicians to perform an efficient and fast deployment of prostheses, by finding the optimal number and locations of EMG channels. It will also find a reliable subset of movements that can be achieved with high performance. 3- The relationship between the force of contraction and the statistics of EMG signals has been investigated, utilising an experimental design where visual feedback from a Myoelectric Control Interface (MCI) helped the participants to produce the correct level of force. Kurtosis values were found to decrease monotonically when the contraction level increased, thus indicating that kurtosis can be used to distinguish different forces of contractions. 4- The real practical problem of the degradation of classification performance as a result of the variation of force levels during daily use of the prosthesis has been investigated, and solved by proposing a training approach and the use of a robust feature extraction method, based on the spectrum. The recommendations of this investigation improve the practical robustness of prostheses controlled with PR systems and progress a step further towards clinical implementation and improving the quality of life of amputees. The project showed that PR systems achieved a reliable performance for a large number of amputees, taking into account real life issues such as individual finger control for high dexterity, the effect of force level variation, and optimisation of the movements and EMG channels for each individual amputee. The findings of this thesis showed that the PR systems need to be appropriately tuned before usage, such as training with multiple forces to help to reduce the effect of force variation, aiming to improve practical robustness, and also finding the optimal EMG channel for each amputee, to improve the PR system’s performance. The outcome of this research enables the implementation of PR systems in real prostheses that can be used by amputees.Ministry of Higher Education and Scientific Research and Baghdad University- Baghdad/Ira

    Selected topics in surface electromyography for use in the occupational setting: expert perspectives

    Get PDF
    "e various chapters in this compilation discuss surface electromyography as it can be applied to ergonomic studies. Topics include aspects associated with the use of electromyography for the study of ergonomic problems; the anatomic and physiologic information fundamental to understanding the recording and subsequent study of the electrical activity of muscles using surface electromyographic techniques; the fundamentals of recording electromyographic data during activities of interest to the ergonomist or in the setting where ergonomic activities are performed; the instrumentation required to obtain information from the electromyographic signal (including discussions of the relationship between temporal aspects of electromyography and anatomically associated movement, the relationship between electromyography and the production of force, and the relationship between electromyography and muscle fatigue); output forms for data analysis and applications interpretation of the electromyographic signal; functional muscle and the effects on electromyographic output; and the applications of electromyography in ergonomics." - NIOSHTIC-2"Editor in chief, Gary L. Soderberg"--P. iii."March 1992."Includes bibliographical references

    Computational Intelligence in Electromyography Analysis

    Get PDF
    Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles. EMG may be used clinically for the diagnosis of neuromuscular problems and for assessing biomechanical and motor control deficits and other functional disorders. Furthermore, it can be used as a control signal for interfacing with orthotic and/or prosthetic devices or other rehabilitation assists. This book presents an updated overview of signal processing applications and recent developments in EMG from a number of diverse aspects and various applications in clinical and experimental research. It will provide readers with a detailed introduction to EMG signal processing techniques and applications, while presenting several new results and explanation of existing algorithms. This book is organized into 18 chapters, covering the current theoretical and practical approaches of EMG research

    Smart Sensors for Healthcare and Medical Applications

    Get PDF
    This book focuses on new sensing technologies, measurement techniques, and their applications in medicine and healthcare. Specifically, the book briefly describes the potential of smart sensors in the aforementioned applications, collecting 24 articles selected and published in the Special Issue “Smart Sensors for Healthcare and Medical Applications”. We proposed this topic, being aware of the pivotal role that smart sensors can play in the improvement of healthcare services in both acute and chronic conditions as well as in prevention for a healthy life and active aging. The articles selected in this book cover a variety of topics related to the design, validation, and application of smart sensors to healthcare

    Muscle physiology instrumentation

    Get PDF

    Biomedical Signal and Image Processing

    Get PDF
    Written for senior-level and first year graduate students in biomedical signal and image processing, this book describes fundamental signal and image processing techniques that are used to process biomedical information. The book also discusses application of these techniques in the processing of some of the main biomedical signals and images, such as EEG, ECG, MRI, and CT. New features of this edition include the technical updating of each chapter along with the addition of many more examples, the majority of which are MATLAB based

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 402)

    Get PDF
    This bibliography lists 244 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Nov. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Aerospace medicine and biology - a continuing bibliography

    Get PDF
    Aerospace medicine and biology - bibliograph

    Electroencephalogram Signal Processing For Hybrid Brain Computer Interface Systems

    Get PDF
    The goal of this research was to evaluate and compare three types of brain computer interface (BCI) systems, P300, steady state visually evoked potentials (SSVEP) and Hybrid as virtual spelling paradigms. Hybrid BCI is an innovative approach to combine the P300 and SSVEP. However, it is challenging to process the resulting hybrid signals to extract both information simultaneously and effectively. The major step executed toward the advancement to modern BCI system was to move the BCI techniques from traditional LED system to electronic LCD monitor. Such a transition allows not only to develop the graphics of interest but also to generate objects flickering at different frequencies. There were pilot experiments performed for designing and tuning the parameters of the spelling paradigms including peak detection for different range of frequencies of SSVEP BCI, placement of objects on LCD monitor, design of the spelling keyboard, and window time for the SSVEP peak detection processing. All the experiments were devised to evaluate the performance in terms of the spelling accuracy, region error, and adjacency error among all of the paradigms: P300, SSVEP and Hybrid. Due to the different nature of P300 and SSVEP, designing a hybrid P300-SSVEP signal processing scheme demands significant amount of research work in this area. Eventually, two critical questions in hybrid BCl are: (1) which signal processing strategy can best measure the user\u27s intent and (2) what a suitable paradigm is to fuse these two techniques in a simple but effective way. In order to answer these questions, this project focused mainly on developing signal processing and classification technique for hybrid BCI. Hybrid BCI was implemented by extracting the specific information from brain signals, selecting optimum features which contain maximum discrimination information about the speller characters of our interest and by efficiently classifying the hybrid signals. The designed spellers were developed with the aim to improve quality of life of patients with disability by utilizing visually controlled BCI paradigms. The paradigms consist of electrodes to record electroencephalogram signal (EEG) during stimulation, a software to analyze the collected data, and a computing device where the subject’s EEG is the input to estimate the spelled character. Signal processing phase included preliminary tasks as preprocessing, feature extraction, and feature selection. Captured EEG data are usually a superposition of the signals of interest with other unwanted signals from muscles, and from non-biological artifacts. The accuracy of each trial and average accuracy for subjects were computed. Overall, the average accuracy of the P300 and SSVEP spelling paradigm was 84% and 68.5 %. P300 spelling paradigms have better accuracy than both the SSVEP and hybrid paradigm. Hybrid paradigm has the average accuracy of 79 %. However, hybrid system is faster in time and more soothing to look than other paradigms. This work is significant because it has great potential for improving the BCI research in design and application of clinically suitable speller paradigm

    Development of nonlinear techniques based on time-frequency representation and information theory for the analysis of EEG signals to assess different states of consciousness

    Get PDF
    Electroencephalogram (EEG) recordings provide insight into the changes in brain activity associated with various states of anesthesia, epilepsy, brain attentiveness, sleep disorders, brain disorders, etc. EEG's are complex signals whose statistical properties depend on both space and time. Their randomness and non-stationary characteristics make them impossible to be described in an accurate way with a simple technique, requiring analysis and characterization involves techniques that take into account their non-stationarity. For that, new advanced techniques in order to improve the efficiency of the EEG based methods used in the clinical practice have to be developed. The main objective of this thesis was to investigate and implement different methods based on nonlinear techniques in order to develop indexes able to characterize the frequency spectrum, the nonlinear dynamics and the complexity of the EEG signals recorded in different state of consciousness. Firstly, a new method for removing peak and spike in biological signal based on the signal envelope was successfully designed and applied to simulated and real EEG signals, obtaining performances significantly better than the traditional adaptive filters. Then, several studies were carried out in order to extract and evaluate EEG measures based on nonlinear techniques in different contexts such as the automatic detection of sleepiness and the characterization and prediction of the nociceptive stimuli and the assessment of the sedation level. Four novel indexes were defined by calculating entropy of the Choi-Williams distribution (CWD) with respect to time or frequency, by using the probability mass function at each time instant taken independently or by using the probability mass function of the entire CWD. The values of these indexes tend to decrease, with different proportion, when the behavior of the signals evolved from chaos or randomness to periodicity and present differences when comparing EEG recorded in eyes-open and eyes-closed states and in ictal and non-ictal states. Measures obtained with time-frequency representation, mutual information function and correntropy, were applied to EEG signals for the automatic sleepiness detection in patients suffering sleep disorders. The group of patients with excessive daytime sleepiness presented more power in ¿ band than the group without sleepiness, which presented higher spectral and cross-spectral entropy in the frontal zone in d band. More complexity in the occipital zone was found in the group of patients without sleepiness in ß band, while a stronger nonlinear coupling between the occipital and frontal regions was detected in patients with excessive daytime sleepiness, in ß band. Time-frequency representation and non-linear measures were also used in order to study how adaptation and fatigue affect the event-related brain potentials to stimuli of different modalities. Differences between the responses to infrequent and frequent stimulation in different recording periods were found in series of averaged EEG epochs recorded after thermal, electrical and auditory stimulation. Nonlinear measures calculated on EEG filtered in the traditional frequency bands and in higher frequency bands improved the assessment of the sedation level. These measures were obtained by applying all the developed techniques on signals recorded from patients sedated, in order to predict the responses to pain stimulation such as nail bad compression and endoscopy tube insertion. The proposed measures exhibit better performances than the bispectral index (BIS), a traditional indexes used for hypnosis assessment. In conclusion, nonlinear measures based on time-frequency representation, mutual information functions and correntropy provided additional information that helped to improve the automatic sleepiness detection, the characterization and prediction of the nociceptive responses and thus the assessment of the sedation level.El registro de la señal Electroencefalografíca (EEG) proporciona información sobre los cambios en la actividad cerebral asociados con varios estados de la anestesia, la epilepsia, la atención cerebral, los trastornos del sueño, los trastornos cerebrales, etc. Los EEG son señales complejas cuyas propiedades estadísticas dependen del espacio y del tiempo. Sus características aleatorias y no estacionarias hacen imposible que el EEG se describa de forma precisa con una técnica sencilla requiriendo un análisis y una caracterización que implica técnicas que tengan en cuenta su no estacionariedad. Todo esto aumenta la necesidad de desarrollar nuevas técnicas avanzadas con el fin de mejorar la eficiencia de los métodos utilizados en la práctica clínica que son basados en el análisis de EEG. En esta tesis se han investigado y aplicado diferentes métodos utilizando técnicas no lineales con el fin de desarrollar índices capaces de caracterizar el espectro de frecuencias, la dinámica no lineal y la complejidad de las señales EEG registradas en diferentes estados de conciencia. En primer lugar, se ha desarrollado un nuevo algoritmo basado en la envolvente de la señal para la eliminación de ruido de picos en las señales biológicas. Este algoritmo ha sido aplicado a señales simuladas y reales obteniendo resultados significativamente mejores comparados con los filtros adaptativos tradicionales. Seguidamente, se han llevado a cabo varios estudios con el fin de extraer y evaluar las medidas de EEG basadas en técnicas no lineales en diferentes contextos. Se han definido nuevos índices mediante el cálculo de la entropía de la distribución de Choi-Williams (DCW) con respecto al tiempo o la frecuencia. Se ha observado que los valores de estos índices tienden a disminuir, en diferentes proporciones, cuando el comportamiento de las señales evoluciona de caótico o aleatorio a periódico. Además, se han encontrado valores diferentes de estos índices aplicados a la señal EEG registrada en diferentes estados. Diferentes medidas basadas en la representación tiempo-frecuencia, la función de información mutua y la correntropia se han aplicado al EEG para la detección automática de la somnolencia en pacientes que sufren trastornos del sueño. Se ha observado en la zona frontal que la potencia en la banda θ es mayor en los pacientes con somnolencia diurna excesiva, mientras que la entropía espectral y la entropía espectral cruzada en la banda δ es mayor en los pacientes sin somnolencia. En el grupo sin somnolencia se ha encontrado más complejidad en la zona occipital, mientras que el acoplamiento no lineal entre las regiones occipital y frontal ha resultado más fuerte en pacientes con somnolencia diurna excesiva, en la banda β. La representación tiempo-frecuencia y las medidas no lineales se han utilizado para estudiar cómo la adaptación y la fatiga afectan a los potenciales cerebrales relacionados con estímulos térmicos, eléctricos y auditivos. Analizando el promedio de varias épocas de EEG grabadas después de la estimulación, se han encontrado diferencias entre las respuestas a la estimulación frecuente e infrecuente en diferentes períodos de registro. Todas las técnicas que se han desarrollado, se han aplicado a señales EEG registradas en pacientes sedados, con el fin de predecir las respuestas a la estimulación del dolor. Un conjunto de medidas calculadas en señales EEG filtradas en diferentes bandas de frecuencia ha permitido mejorar la evaluación del nivel de sedación. Las medidas propuestas han presentado un mejor rendimiento comparado con el índice bispectral, un indicador de hipnosis tradicional. En conclusión, las medidas no lineales basadas en la representación tiempofrecuencia, funciones de información mutua y correntropia han proporcionado informaciones adicionales que contribuyeron a mejorar la detección automática de la somnolencia, la caracterización y predicción de las respuestas nociceptivas y por lo tanto la evaluación del nivel de sedación
    corecore