9 research outputs found

    Comprehensive estimation of lake volume changes on the Tibetan Plateau during 1976–2019 and basin-wide glacier contribution

    Get PDF
    This study was supported by grants from the Natural Science Foundation of China (41831177 , 41871056), the European Space Agency within the Dragon 4 program ( 4000121469/17/I-NB), the Swiss National Science Foundation (No. 200021E_177652/1) within the framework of the DFG Research Unit GlobalCDA (FOR2630), and the French Space Agency (CNES ). G. Zhang wants to thank the China Scholarship Council for supporting his visit to University of Zurich (the former affiliation of T. Bolch) from December 2017 to December 2018.Volume changes and water balances of the lakes on the Tibetan Plateau (TP) are spatially heterogeneous and the lake-basin scale drivers remain unclear. In this study, we comprehensively estimated water volume changes for 1132 lakes larger than 1 km2 and determined the glacier contribution to lake volume change at basin-wide scale using satellite stereo and multispectral images. Overall, the water mass stored in the lakes increased by 169.7 ± 15.1 Gt (3.9 ± 0.4 Gt yr−1) between 1976 and 2019, mainly in the Inner-TP (157.6 ± 11.6 or 3.7 ± 0.3 Gt yr−1). A substantial increase in mass occurred between 1995 and 2019 (214.9 ± 12.7 Gt or 9.0 ± 0.5 Gt yr−1), following a period of decrease (−45.2 ± 8.2 Gt or −2.4 ± 0.4 Gt yr−1) prior to 1995. A slowdown in the rate of water mass increase occurred between 2010 and 2015 (23.1 ± 6.5 Gt or 4.6 ± 1.3 Gt yr−1), followed again by a high value between 2015 and 2019 (65.7 ± 6.7 Gt or 16.4 ± 1.7 Gt yr−1). The increased lake-water mass occurred predominately in glacier-fed lakes (127.1 ± 14.3 Gt) in contrast to non-glacier-fed lakes (42.6 ± 4.9 Gt), and in endorheic lakes (161.9 ± 14.0 Gt) against exorheic lakes (7.8 ± 5.8 Gt) over 1976–2019. Endorheic and glacier-fed lakes showed strongly contrasting patterns with a remarkable storage increase in the northern TP and slight decrease in the southern TP. The ratio of excess glacier meltwater runoff to lake volume increase between 2000 and ~2019 was less than 30% for the entire Inner-TP based on several independent data sets. Among individual lake-basins, 14 showed a glacier contribution to lake volume increase of 0.3% to 29.1%. The other eight basins exhibited a greater glacier contribution of 116% to 436%, which could be explained by decreased net precipitation. The lake volume change and basin scale glacier contribution reveal that the enhanced precipitation predominantly drives lake volume increase but it is spatially heterogeneous.PostprintPeer reviewe

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings
    corecore