1,753 research outputs found

    A Formalization of the Theorem of Existence of First-Order Most General Unifiers

    Full text link
    This work presents a formalization of the theorem of existence of most general unifiers in first-order signatures in the higher-order proof assistant PVS. The distinguishing feature of this formalization is that it remains close to the textbook proofs that are based on proving the correctness of the well-known Robinson's first-order unification algorithm. The formalization was applied inside a PVS development for term rewriting systems that provides a complete formalization of the Knuth-Bendix Critical Pair theorem, among other relevant theorems of the theory of rewriting. In addition, the formalization methodology has been proved of practical use in order to verify the correctness of unification algorithms in the style of the original Robinson's unification algorithm.Comment: In Proceedings LSFA 2011, arXiv:1203.542

    Nominal Unification of Higher Order Expressions with Recursive Let

    Get PDF
    A sound and complete algorithm for nominal unification of higher-order expressions with a recursive let is described, and shown to run in non-deterministic polynomial time. We also explore specializations like nominal letrec-matching for plain expressions and for DAGs and determine the complexity of corresponding unification problems.Comment: Pre-proceedings paper presented at the 26th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2016), Edinburgh, Scotland UK, 6-8 September 2016 (arXiv:1608.02534

    Deduction modulo theory

    Get PDF
    This paper is a survey on Deduction modulo theor

    A Mechanized Proof of a Textbook Type Unification Algorithm

    Get PDF
    Unification is the core of type inference algorithms for modern functional programming languages, like Haskell and SML. As a first step towards a formalization of a type inference algorithm for such programming languages, we present a formalization in Coq of a type unification algorithm that follows classic algorithms presented in programming language textbooks. We also report on the use of such formalization to build a correct type inference algorithm for the simply typed λ-calculus

    The prospects for mathematical logic in the twenty-first century

    Get PDF
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.Comment: Association for Symbolic Logi

    Expectations for Associative-Commutative Unification Speedups in a Multicomputer Environment

    Get PDF
    An essential element of automated deduction systems is unification algorithms which identify general substitutions and when applied to two expressions, make them identical. However, functions which are associative and commutative, such as the usual addition and multiplication functions, often arise in term rewriting systems, program verification, the theory of abstract data types and logic programming. The introduction to the associative and commutative equality axioms together with standard unification brings with it problems of termination and unreasonably large search spaces. One way around these problems is to remove the troublesome axioms from the system and to employ a unification algorithm which unifies modulo the axioms of associativity and commutativity. Unlike standard unification, the associative-commutative (AC) unification of two expressions can lead to the formation of many most general unifiers. A report is presented on a hybrid AC unification algorithm which has been implemented to run in parallel on an Intel iPSC/

    Preprints of Proceedings of GWAI-92

    No full text
    This is a preprint of the proceedings of the German Workshop on Artificial Intelligence (GWAI) 1992. The final version will appear in the Lecture Notes in Artificial Intelligence
    corecore