146 research outputs found

    Invariants and Home Spaces in Transition Systems and Petri Nets

    Full text link
    This lecture note focuses on comparing the notions of invariance and home spaces in Transition Systems and more particularly, in Petri Nets. We also describe how linear algebra relates to these basic notions in Computer Science, how it can be used for extracting invariant properties from a parallel system described by a Labeled Transition System in general and a Petri Net in particular. We endeavor to regroup a number of algebraic results dispersed throughout the Petri Nets literature with the addition of new results around the notions of semiflows and generating sets. Examples are given to illustrate how invariants can be handled to prove behavioral properties of a Petri Net. Some additional thoughts on invariants and home spaces will conclude this note.Comment: 83 page

    Methodologies synthesis

    Get PDF
    This deliverable deals with the modelling and analysis of interdependencies between critical infrastructures, focussing attention on two interdependent infrastructures studied in the context of CRUTIAL: the electric power infrastructure and the information infrastructures supporting management, control and maintenance functionality. The main objectives are: 1) investigate the main challenges to be addressed for the analysis and modelling of interdependencies, 2) review the modelling methodologies and tools that can be used to address these challenges and support the evaluation of the impact of interdependencies on the dependability and resilience of the service delivered to the users, and 3) present the preliminary directions investigated so far by the CRUTIAL consortium for describing and modelling interdependencies

    Efficient computer-aided verification of parallel and distributed software systems

    Get PDF
    The society is becoming increasingly dependent on applications of distributed software systems, such as controller systems and wireless telecommunications. It is very difficult to guarantee the correct operation of this kind of systems with traditional software quality assurance methods, such as code reviews and testing. Formal methods, which are based on mathematical theories, have been suggested as a solution. Unfortunately, the vast complexity of the systems and the lack of competent personnel have prevented the adoption of sophisticated methods, such as theorem proving. Computerised tools for verifying finite state asynchronous systems exist, and they been successful on locating errors in relatively small software systems. However, a direct translation of software to low-level formal models may lead to unmanageably large models or complex behaviour. Abstract models and algorithms that operate on compact high-level designs are needed to analyse larger systems. This work introduces modelling formalisms and verification methods of distributed systems, presents efficient algorithms for verifying high-level models of large software systems, including an automated method for abstracting unneeded details from systems consisting of loosely connected components, and shows how the methods can be applied in the software development industry.reviewe

    Sequence-Oriented Diagnosis of Discrete-Event Systems

    Get PDF
    Model-based diagnosis has always been conceived as set-oriented, meaning that a candidate is a set of faults, or faulty components, that explains a collection of observations. This perspective applies equally to both static and dynamical systems. Diagnosis of discrete-event systems (DESs) is no exception: a candidate is traditionally a set of faults, or faulty events, occurring in a trajectory of the DES that conforms with a given sequence of observations. As such, a candidate does not embed any temporal relationship among faults, nor does it account for multiple occurrences of the same fault. To improve diagnostic explanation and support decision making, a sequence-oriented perspective to diagnosis of DESs is presented, where a candidate is a sequence of faults occurring in a trajectory of the DES, called a fault sequence. Since a fault sequence is possibly unbounded, as the same fault may occur an unlimited number of times in the trajectory, the set of (output) candidates may be unbounded also, which contrasts with set-oriented diagnosis, where the set of candidates is bounded by the powerset of the domain of faults. Still, a possibly unbounded set of fault sequences is shown to be a regular language, which can be defined by a regular expression over the domain of faults, a property that makes sequence-oriented diagnosis feasible in practice. The task of monitoring-based diagnosis is considered, where a new candidate set is generated at the occurrence of each observation. The approach is based on three different techniques: (1) blind diagnosis, with no compiled knowledge, (2) greedy diagnosis, with total knowledge compilation, and (3) lazy diagnosis, with partial knowledge compilation. By knowledge we mean a data structure slightly similar to a classical DES diagnoser, which can be generated (compiled) either entirely offline (greedy diagnosis) or incrementally online (lazy diagnosis). Experimental evidence suggests that, among these techniques, only lazy diagnosis may be viable in non-trivial application domains

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    Contribution to the verification of timed automata (determinization, quantitative verification and reachability in networks of automata)

    Get PDF
    Cette thèse porte sur la vérification des automates temporisés, un modèle bien établi pour les systèmes temps-réels. La thèse est constituée de trois parties. La première est dédiée à la déterminisation des automates temporisés, problème qui n'a pas de solution en général. Nous proposons une méthode approchée (sur-approximation, sous-approximation, mélange des deux) fondée sur la construction d'un jeu de sûreté. Cette méthode améliore les approches existantes en combinant leurs avantages respectifs. Nous appliquons ensuite cette méthode de déterminisation à la génération automatique de tests de conformité. Dans la seconde partie, nous prenons en compte des aspects quantitatifs des systèmes temps-réel grâce à une notion de fréquence des états acceptants dans une exécution d'un automate temporisé. Plus précisément, la fréquence d'une exécution est la proportion de temps passée dans les états acceptants. Nous intéressons alors à l'ensemble des fréquences des exécutions d'un automate temporisé pour étudier, par exemple, le vide de langages seuils. Nous montrons ainsi que les bornes de l'ensemble des fréquences sont calculables pour deux classes d'automates temporisés. D'une part, les bornes peuvent être calculées en espace logarithmique par une procédure non-déterministe dans les automates temporisés à une horloge. D'autre part, elles peuvent être calculées en espace polynomial dans les automates temporisés à plusieurs horloges ne contenant pas de cycles forçant la convergence d'horloges. Finalement, nous étudions le problème de l'accessibilité des états acceptants dans des réseaux d'automates temporisés qui communiquent via des files FIFO. Nous considérons tout d'abord des automates temporisés à temps discret, et caractérisons les topologies de réseaux pour lesquelles l'accessibilité est décidable. Cette caractérisation est ensuite étendue aux automates temporisés à temps continu.This thesis is about verification of timed automata, a well-established model for real time systems. The document is structured in three parts. The first part is dedicated to the determinization of timed automata, a problem which has no solution in general. We propose an approximate (over-approximation/under-approximation/mix) method based on the construction of a safety game. This method improves both existing approaches by combining their respective advantages. Then, we apply this determinization approach to the generation of conformance tests. In the second part, we take into account quantitative aspects of real time systems thanks to a notion of frequency of accepting states along executions of timed automata. More precisely, the frequency of a run is the proportion of time elapsed in accepting states. Then, we study the set of frequencies of runs of a timed automaton in order to decide, for example, the emptiness of threshold languages. We thus prove that the bounds of the set of frequencies are computable for two classes of timed automata. On the one hand, we prove that bounds are computable in logarithmic space by a non-deterministic procedure in one-clock timed automata. On the other hand, they can be computed in polynomial space in timed automata with several clocks, but having no cycle that forces the convergence between clocks. Finally, we study the reachability problem in networks of timed automata communicating through FIFO channels. We first consider dicrete timed automata, and characterize topologies of networks for which reachability is decidable. Then, this characterization is extended to dense-time automata.RENNES1-Bibl. électronique (352382106) / SudocSudocFranceF
    • …
    corecore