91 research outputs found

    A Security Formal Verification Method for Protocols Using Cryptographic Contactless Smart Cards

    Get PDF
    We present a method of contactless smart card protocol modeling suitable for finding vulnerabilities using model checking. Smart cards are used in applications that require high level of security, such as payment applications, therefore it should be ensured that the implementation does not contain any vulnerabilities. High level application specifications may lead to different implementations. Protocol that is proved to be secure on high level and that uses secure smart card can be implemented in more than one way, some of these implementations are secure, some of them introduce vulnerabilities to the application. The goal of this paper is to provide a method that can be used to create a model of arbitrary smart card, with focus on contactless smart cards, to create a model of the protocol, and to use model checking to find attacks in this model. AVANTSSAR Platform was used for the formal verification, the models are written in the ASLan++ language. Examples demonstrate the usability of the proposed method

    Security Protocol Specification and Verification with AnBx

    Get PDF
    Designing distributed protocols is complex and requires actions at very different levels: from the design of an interaction flow supporting the desired application-specific guarantees, to the selection of the most appropriate network-level protection mechanisms. To tame this complexity, we propose AnBx, a formal protocol specification language based on the popular Alice & Bob notation. AnBx offers channels as the main abstraction for communication, providing different authenticity and/or confidentiality guarantees for message transmission. AnBx extends existing proposals in the literature with a novel notion of forwarding channels, enforcing specific security guarantees from the message originator to the final recipient along a number of intermediate forwarding agents. We give a formal semantics of AnBx in terms of a state transition system expressed in the AVISPA Intermediate Format. We devise an ideal channel model and a possible cryptographic implementation, and we show that, under mild restrictions, the two representations coincide, thus making AnBx amenable to automated verification with different tools. We demonstrate the benefits of the declarative specification style distinctive of AnBx by revisiting the design of two existing e-payment protocols, iKP and SET

    A Methodology for Protocol Verification Applied to EMV 1

    Get PDF

    Exploring a resource allocation security protocol for secure service migration in commercial cloud environments

    Get PDF
    Recently, there has been a significant increase in the popularity of cloud computing systems that offer Cloud services such as Networks, Servers, Storage, Applications, and other available on-demand re-sources or pay-as-you-go systems with different speeds and Qualities of Service. These cloud computing environments share resources by providing virtualization techniques that enable a single user to ac-cess various Cloud Services Thus, cloud users have access to an infi-nite computing resource, allowing them to increase or decrease their resource consumption capacity as needed. However, an increasing number of Commercial Cloud Services are available in the market-place from a wide range of Cloud Service Providers (CSPs). As a result, most CSPs must deal with dynamic resource allocation, in which mobile services migrate from one cloud environment to another to provide heterogeneous resources based on user requirements. A new service framework has been proposed by Sardis about how ser-vices can be migrated in Cloud Infrastructure. However, it does not address security and privacy issues in the migration process. Fur-thermore, there is still a lack of heuristic algorithms that can check requested and available resources to allocate and deallocate before the secure migration begins. The advent of Virtual machine technol-ogy, for example, VMware, and container technology, such as Docker, LXD, and Unikernels has made the migration of services possible. As Cloud services, such as Vehicular Cloud, are now being increasingly offered in highly mobile environments, Y-Comm, a new framework for building future mobile systems, has developed proactive handover to support the mobile user. Though there are many mechanisms in place to provide support for mobile services, one way of addressing the challenges arising because of this emerging application is to move the computing resources closer to the end-users and find how much computing resources should be allocated to meet the performance re-quirements/demands. This work addresses the above challenges by proposing the development of resource allocation security protocols for secure service migration that allow the safe transfer of servers and monitoring of the capacity of requested resources to different Cloud environments. In this thesis, we propose a Resource Allocation Secu-rity Protocol for secure service migration that allows resources to be allocated efficiently is analyzed. In our research, we use two differ-ent formal modelling and verification techniques to verify an abstract protocol and validate the security properties such as secrecy, authen-tication, and key exchange for secure service migration. The new protocol has been verified in AVISPA and ProVerif formal verifier and is being implemented in a new Service Management Framework Prototype to securely manage and allocate resources in Commercial Cloud Environments. And then, a Capability-Based Secure Service Protocol (SSP) was developed to ensure that capability-based service protocol proves secrecy, authentication, and authorization, and that it can be applied to any service. A basic prototype was then devel-oped to test these ideas using a block storage system known as the Network Memory Service. This service was used as the backend of a FUSE filesystem. The results show that this approach can be safely implemented and should perform well in real environments
    corecore