70,060 research outputs found

    Verification of program computations

    Get PDF
    Formal verification of complex algorithms is challenging. Verifying their implementations in reasonable time is infeasible using current verification tools and usually involves intricate mathematical theorems. Certifying algorithms compute in addition to each output a witness certifying that the output is correct. A checker for such a witness is usually much simpler than the original algorithm -- yet it is all the user has to trust. The verification of checkers is feasible with current tools and leads to computations that can be completely trusted. We describe a framework to seamlessly verify certifying computations. We demonstrate the effectiveness of our approach by presenting the verification of typical examples of the industrial-level and widespread algorithmic library LEDA. We present and compare two alternative methods for verifying the C implementation of the checkers. Moreover, we present work that was done during an internship at NICTA, Australia\u27s Information and Communications Technology Research Centre of Excellence. This work contributes to building a feasible framework for verifying efficient file systems code. As opposed to the algorithmic problems we address in this thesis, file systems code is mostly straightforward and hence a good candidate for automation.Die formale Verifikation der Implementierung komplexer Algorithmen ist schwierig. Sie übersteigt die Möglichkeiten der heutigen Verifikationswerkzeuge und erfordert für gewöhnlich komplexe mathematische Theoreme. Zertifizierende Algorithmen berechnen zu jeder Ausgabe ein Zerfitikat, das die Korrektheit der Antwort bestätigt. Ein Checker für ein solches Zertifikat ist normalerweise ein viel einfacheres Programm und doch muss ein Nutzer nur dem Checker vertrauen. Die Verifizierung von Checkern ist mit den heutigen Werkzeugen möglich und führt zu Berechnungen, denen völlig vertraut werden kann. Wir beschreiben eine Rahmenstruktur zur Verifikation zertifizierender Berechnungen und demonstrieren die Effektivität unseres Ansatzes an Hand typischer Beispiele aus der hochqualitätiven und oft eingesetzten LEDA Algorithmenbibliothek. We präsentieren und bewerten zwei alternative Methoden zur Verifikation von Checkerimplementierungen in C. Desweiteren beschreiben wir Ergebnisse, die während eines Praktikums am NICTA, dem Australischen Forschungszentrum für Informations- und Kommunikationstechnik, erzielt wurden. Diese Arbeit trägt zum Aufbau einer praktisch einsetzbaren Rahmenstruktur zur Verifizierung von Code für effiziente Dateisysteme bei. Im Gegensatz zu den algorithmischen Problemen, die wir in dieser Arbeiten behandeln, ist der Code für Dateisysteme weitgehend unkompliziert unddaher ein guter Kandidat zur Automatisierung

    Slot Games for Detecting Timing Leaks of Programs

    Full text link
    In this paper we describe a method for verifying secure information flow of programs, where apart from direct and indirect flows a secret information can be leaked through covert timing channels. That is, no two computations of a program that differ only on high-security inputs can be distinguished by low-security outputs and timing differences. We attack this problem by using slot-game semantics for a quantitative analysis of programs. We show how slot-games model can be used for performing a precise security analysis of programs, that takes into account both extensional and intensional properties of programs. The practicality of this approach for automated verification is also shown.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    Deductive Verification of Parallel Programs Using Why3

    Full text link
    The Message Passing Interface specification (MPI) defines a portable message-passing API used to program parallel computers. MPI programs manifest a number of challenges on what concerns correctness: sent and expected values in communications may not match, resulting in incorrect computations possibly leading to crashes; and programs may deadlock resulting in wasted resources. Existing tools are not completely satisfactory: model-checking does not scale with the number of processes; testing techniques wastes resources and are highly dependent on the quality of the test set. As an alternative, we present a prototype for a type-based approach to programming and verifying MPI like programs against protocols. Protocols are written in a dependent type language designed so as to capture the most common primitives in MPI, incorporating, in addition, a form of primitive recursion and collective choice. Protocols are then translated into Why3, a deductive software verification tool. Source code, in turn, is written in WhyML, the language of the Why3 platform, and checked against the protocol. Programs that pass verification are guaranteed to be communication safe and free from deadlocks. We verified several parallel programs from textbooks using our approach, and report on the outcome.Comment: In Proceedings ICE 2015, arXiv:1508.0459

    symQV: Automated Symbolic Verification of Quantum Programs

    Full text link
    We present symQV, a symbolic execution framework for writing and verifying quantum computations in the quantum circuit model. symQV can automatically verify that a quantum program complies with a first-order specification. We formally introduce a symbolic quantum program model. This allows to encode the verification problem in an SMT formula, which can then be checked with a delta-complete decision procedure. We also propose an abstraction technique to speed up the verification process. Experimental results show that the abstraction improves symQV's scalability by an order of magnitude to quantum programs with 24 qubits (a 2^24-dimensional state space).Comment: This is the extended version of a paper with the same title that appeared at FM 2023. Tool available at doi.org/10.5281/zenodo.740032

    Automating Program Verification and Repair Using Invariant Analysis and Test Input Generation

    Get PDF
    Software bugs are a persistent feature of daily life---crashing web browsers, allowing cyberattacks, and distorting the results of scientific computations. One approach to improving software uses program invariants---mathematical descriptions of program behaviors---to verify code and detect bugs. Current invariant generation techniques lack support for complex yet important forms of invariants, such as general polynomial relations and properties of arrays. As a result, we lack the ability to conduct precise analysis of programs that use this common data structure. This dissertation presents DIG, a static and dynamic analysis framework for discovering several useful classes of program invariants, including (i) nonlinear polynomial relations, which are fundamental to many scientific applications; disjunctive invariants, (ii) which express branching behaviors in programs; and (iii) properties about multidimensional arrays, which appear in many practical applications. We describe theoretical and empirical results showing that DIG can efficiently and accurately find many important invariants in real-world uses, e.g., polynomial properties in numerical algorithms and array relations in a full AES encryption implementation. Automatic program verification and synthesis are long-standing problems in computer science. However, there has been a lot of work on program verification and less so on program synthesis. Consequently, important synthesis tasks, e.g., generating program repairs, remain difficult and time-consuming. This dissertation proves that certain formulations of verification and synthesis are equivalent, allowing for direct applications of techniques and tools between these two research areas. Based on these ideas, we develop CETI, a tool that leverages existing verification techniques and tools for automatic program repair. Experimental results show that CETI can have higher success rates than many other standard program repair methods
    corecore