70 research outputs found

    Formal Analysis of Concurrent Programs

    Get PDF
    In this thesis, extensions of Kleene algebras are used to develop algebras for rely-guarantee style reasoning about concurrent programs. In addition to these algebras, detailed denotational models are implemented in the interactive theorem prover Isabelle/HOL. Formal soundness proofs link the algebras to their models. This follows a general algebraic approach for developing correct by construction verification tools within Isabelle. In this approach, algebras provide inference rules and abstract principles for reasoning about the control flow of programs, while the concrete models provide laws for reasoning about data flow. This yields a rapid, lightweight approach for the construction of verification and refinement tools. These tools are used to construct a popular example from the literature, via refinement, within the context of a general-purpose interactive theorem proving environment

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin

    Owicki-Gries Reasoning for C11 RAR

    Get PDF
    Owicki-Gries reasoning for concurrent programs uses Hoare logic together with an interference freedom rule for concurrency. In this paper, we develop a new proof calculus for the C11 RAR memory model (a fragment of C11 with both relaxed and release-acquire accesses) that allows all Owicki-Gries proof rules for compound statements, including non-interference, to remain unchanged. Our proof method features novel assertions specifying thread-specific views on the state of programs. This is combined with a set of Hoare logic rules that describe how these assertions are affected by atomic program steps. We demonstrate the utility of our proof calculus by verifying a number of standard C11 litmus tests and Peterson’s algorithm adapted for C11. Our proof calculus and its application to program verification have been fully mechanised in the theorem prove

    Assertion-based proof checking of Chang-Roberts leader election in PVS

    Get PDF
    We report a case study in automated incremental assertion-based proof checking with PVS. Given an annotated distributed algorithm, our tool ProPar generates the proof obligations for partial correctness, plus a proof script per obligation. ProPar then lets PVS attempt to discharge all obligations by running the proof scripts. The Chang-Roberts algorithm elects a leader on a unidirectional ring with unique identities. With ProPar, we check its correctness with a very high degree of automation: over 90% of the proof obligations is discharged automatically. This case study underlines the feasibility of the approach and is, to the best of our knowledge, the first verification of the Chang-Roberts algorithm for arbitrary ring size in a proof checker

    Constructive formal methods and protocol standardization

    Get PDF
    This research is part of the NWO project "Improving the Quality of Protocol Standards". In this project we have cooperated with industrial standardization committees that are developing protocol standards. Thus we have contributed to these international standards, and we have generated relevant research questions in the field of formal methods. The first part of this thesis is related to the ISO/IEEE 1073.2 standard, which addresses medical device communication. The protocols in this standard were developed from a couple of MSC scenarios that describe typical intended behavior. Upon synthesizing a protocol from such scenarios, interference between these scenarios may be introduced, which leads to undesired behaviors. This is called the realizability problem. To address the realizability problem, we have introduced a formal framework that is based on partial orders. In this way the problem that causes the interference can be clearly pointed out. We have provided a complete characterization of realizability criteria that can be used to determine whether interference problems are to be expected. Moreover, we have provided a new constructive approach to solve the undesired interference in practical situations. These techniques have been used to improve the protocol standard under consideration. The second part of this thesis is related to the IEEE 1394.1-2004 standard, which addresses High Performance Serial Bus Bridges. This is an extension of the IEEE 1394-1995 standard, also known as FireWire. The development of the distributed spanning tree algorithm turned out to be a serious problem. To address this problem, we have first developed and proposed a much simpler algorithm. We have also studied the algorithm proposed by the developers of the standard, namely by formally reconstructing a version of it, starting from the specification. Such a constructive approach to verification and analysis uses mathematical techniques, or formal methods, to reveal the essential mechanisms that play a role in the algorithm. We have shown the need for different levels of abstraction, and we have illustrated that the algorithm is in fact distributed at two levels. These techniques are usually applied manually, but we have also developed an approach to automate parts of it using state-of-the-art theorem provers

    Mechanising an algebraic rely-guarantee refinement calculus

    Get PDF
    PhD ThesisDespite rely-guarantee (RG) being a well-studied program logic established in the 1980s, it was not until recently that researchers realised that rely and guarantee conditions could be treated as independent programming constructs. This recent reformulation of RG paved the way to algebraic characterisations which have helped to better understand the difficulties that arise in the practical application of this development approach. The primary focus of this thesis is to provide automated tool support for a rely-guarantee refinement calculus proposed by Hayes et. al., where rely and guarantee are defined as independent commands. Our motivation is to investigate the application of an algebraic approach to derive concrete examples using this calculus. In the course of this thesis, we locate and fix a few issues involving the refinement language, its operational semantics and preexisting proofs. Moreover, we extend the refinement calculus of Hayes et. al. to cover indexed parallel composition, non-atomic evaluation of expressions within specifications, and assignment to indexed arrays. These extensions are illustrated via concrete examples. Special attention is given to design decisions that simplify the application of the mechanised theory. For example, we leave part of the design of the expression language on the hands of the user, at the cost of the requiring the user to define the notion of undefinedness for unary and binary operators; and we also formalise a notion of indexed parallelism that is parametric on the type of the indexes, this is done deliberately to simplify the formalisation of algorithms. Additionally, we use stratification to reduce the number of cases in in simulation proofs involving the operational semantics. Finally, we also use the algebra to discuss the role of types in program derivation

    Deductive Verification of Concurrent Programs

    Get PDF
    Verification of concurrent programs still poses one of the major challenges in computer science. Several techniques to tackle this problem have been proposed. However, they often do not scale. We present an adaptation of the rely/guarantee methodology in dynamic logic. Rely/guarantee uses functional specification to symbolically describe the behavior of concurrently running threads: while each thread guarantees adherence to a specified property at any point in time, all other threads can rely on this property being established. This allows to regard threads largely in isolation--only w.r.t. an environment constrained by these specifications. While rely/guarantee based approaches often suffer from a considerable specification overhead, we complement functional thread specifications with frame conditions. We will explain our approach using a simple, but concurrent programing language. Besides the usual constructs for sequential programs, it caters for dynamic thread creation. We define semantics of concurrent programs w.r.t. an underspecified deterministic scheduling function. To formally reason about programs of this language, we introduce a novel multi-modal logic, Concurrent Dynamic Trace Logic (CDTL). It combines the strengthes of dynamic logic with those of linear temporal logic and allows to express temporal properties about symbolic program traces. We first develop a sound and complete sequent calculus for the logic subset that uses the sequential part of the language, based on symbolic execution. In a second step, we extend this to a calculus for the complete logic by adding symbolic execution rules for concurrent interleavings and dynamic thread creation based on the rely/guarantee methodology. Again, this calculus is proven sound and complete
    • …
    corecore