1,715 research outputs found

    pTNoC: Probabilistically time-analyzable tree-based NoC for mixed-criticality systems

    Get PDF
    The use of networks-on-chip (NoC) in real-time safety-critical multicore systems challenges deriving tight worst-case execution time (WCET) estimates. This is due to the complexities in tightly upper-bounding the contention in the access to the NoC among running tasks. Probabilistic Timing Analysis (PTA) is a powerful approach to derive WCET estimates on relatively complex processors. However, so far it has only been tested on small multicores comprising an on-chip bus as communication means, which intrinsically does not scale to high core counts. In this paper we propose pTNoC, a new tree-based NoC design compatible with PTA requirements and delivering scalability towards medium/large core counts. pTNoC provides tight WCET estimates by means of asymmetric bandwidth guarantees for mixed-criticality systems with negligible impact on average performance. Finally, our implementation results show the reduced area and power costs of the pTNoC.The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under the PROXIMA Project (www.proxima-project.eu), grant agreement no 611085. This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Mladen Slijepcevic is funded by the Obra Social Fundación la Caixa under grant Doctorado “la Caixa” - Severo Ochoa. Carles Hern´andez is jointly funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Modeling high-performance wormhole NoCs for critical real-time embedded systems

    Get PDF
    Manycore chips are a promising computing platform to cope with the increasing performance needs of critical real-time embedded systems (CRTES). However, manycores adoption by CRTES industry requires understanding task's timing behavior when their requests use manycore's network-on-chip (NoC) to access hardware shared resources. This paper analyzes the contention in wormhole-based NoC (wNoC) designs - widely implemented in the high-performance domain - for which we introduce a new metric: worst-contention delay (WCD) that captures wNoC impact on worst-case execution time (WCET) in a tighter manner than the existing metric, worst-case traversal time (WCTT). Moreover, we provide an analytical model of the WCD that requests can suffer in a wNoC and we validate it against wNoC designs resembling those in the Tilera-Gx36 and the Intel-SCC 48-core processors. Building on top of our WCD analytical model, we analyze the impact on WCD that different design parameters such as the number of virtual channels, and we make a set of recommendations on what wNoC setups to use in the context of CRTES.Peer ReviewedPostprint (author's final draft

    Educational package based on the MIPS architecture for FPGA platforms

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores (Major em Telecomunicações). Faculdade de Engenharia. Universidade do Porto. 200
    corecore