2,437 research outputs found

    Temporal Logic Control of POMDPs via Label-based Stochastic Simulation Relations

    Get PDF
    The synthesis of controllers guaranteeing linear temporal logic specifications on partially observable Markov decision processes (POMDP) via their belief models causes computational issues due to the continuous spaces. In this work, we construct a finite-state abstraction on which a control policy is synthesized and refined back to the original belief model. We introduce a new notion of label-based approximate stochastic simulation to quantify the deviation between belief models. We develop a robust synthesis methodology that yields a lower bound on the satisfaction probability, by compensating for deviations a priori, and that utilizes a less conservative control refinement

    Temporal Logic Control of POMDPs via Label-based Stochastic Simulation Relations

    Get PDF
    The synthesis of controllers guaranteeing linear temporal logic specifications on partially observable Markov decision processes (POMDP) via their belief models causes computational issues due to the continuous spaces. In this work, we construct a finite-state abstraction on which a control policy is synthesized and refined back to the original belief model. We introduce a new notion of label-based approximate stochastic simulation to quantify the deviation between belief models. We develop a robust synthesis methodology that yields a lower bound on the satisfaction probability, by compensating for deviations a priori, and that utilizes a less conservative control refinement

    Formal Controller Synthesis for Continuous-Space MDPs via Model-Free Reinforcement Learning

    Full text link
    A novel reinforcement learning scheme to synthesize policies for continuous-space Markov decision processes (MDPs) is proposed. This scheme enables one to apply model-free, off-the-shelf reinforcement learning algorithms for finite MDPs to compute optimal strategies for the corresponding continuous-space MDPs without explicitly constructing the finite-state abstraction. The proposed approach is based on abstracting the system with a finite MDP (without constructing it explicitly) with unknown transition probabilities, synthesizing strategies over the abstract MDP, and then mapping the results back over the concrete continuous-space MDP with approximate optimality guarantees. The properties of interest for the system belong to a fragment of linear temporal logic, known as syntactically co-safe linear temporal logic (scLTL), and the synthesis requirement is to maximize the probability of satisfaction within a given bounded time horizon. A key contribution of the paper is to leverage the classical convergence results for reinforcement learning on finite MDPs and provide control strategies maximizing the probability of satisfaction over unknown, continuous-space MDPs while providing probabilistic closeness guarantees. Automata-based reward functions are often sparse; we present a novel potential-based reward shaping technique to produce dense rewards to speed up learning. The effectiveness of the proposed approach is demonstrated by applying it to three physical benchmarks concerning the regulation of a room's temperature, control of a road traffic cell, and of a 7-dimensional nonlinear model of a BMW 320i car.Comment: This work is accepted at the 11th ACM/IEEE Conference on Cyber-Physical Systems (ICCPS

    Similarity quantification for linear stochastic systems as a set-theoretic control problem

    Get PDF
    For the formal verification and design of control systems, abstractions with quantified accuracy are crucial. Such similarity quantification is hindered by the challenging computation of approximate stochastic simulation relations. This is especially the case when considering accurate deviation bounds between a stochastic continuous-state model and its finite-state abstraction. In this work, we give a comprehensive computational approach and analysis for linear stochastic systems. More precisely, we develop a computational method that characterizes the set of possible simulation relations and optimally trades off the error contributions on the system's output with deviations in the transition probability. To this end, we establish an optimal coupling between the models and simultaneously solve the approximate simulation relation problem as a set-theoretic control problem using the concept of invariant sets. We show the variation of the guaranteed satisfaction probability as a function of the error trade-off in a case study where a formal specification is given as a temporal logic formula.Comment: 16 pages, 9 figures, submitted to Automatic

    Certified Reinforcement Learning with Logic Guidance

    Full text link
    This paper proposes the first model-free Reinforcement Learning (RL) framework to synthesise policies for unknown, and continuous-state Markov Decision Processes (MDPs), such that a given linear temporal property is satisfied. We convert the given property into a Limit Deterministic Buchi Automaton (LDBA), namely a finite-state machine expressing the property. Exploiting the structure of the LDBA, we shape a synchronous reward function on-the-fly, so that an RL algorithm can synthesise a policy resulting in traces that probabilistically satisfy the linear temporal property. This probability (certificate) is also calculated in parallel with policy learning when the state space of the MDP is finite: as such, the RL algorithm produces a policy that is certified with respect to the property. Under the assumption of finite state space, theoretical guarantees are provided on the convergence of the RL algorithm to an optimal policy, maximising the above probability. We also show that our method produces ''best available'' control policies when the logical property cannot be satisfied. In the general case of a continuous state space, we propose a neural network architecture for RL and we empirically show that the algorithm finds satisfying policies, if there exist such policies. The performance of the proposed framework is evaluated via a set of numerical examples and benchmarks, where we observe an improvement of one order of magnitude in the number of iterations required for the policy synthesis, compared to existing approaches whenever available.Comment: This article draws from arXiv:1801.08099, arXiv:1809.0782
    • …
    corecore