409 research outputs found

    Towards high quality and flexible future internet architectures

    Get PDF

    Software-Defined Networks Supporting Time-Sensitive In-Vehicular Communication

    Full text link
    Future in-vehicular networks will be based on Ethernet. The IEEE Time-Sensitive Networking (TSN) is a promising candidate to satisfy real-time requirements in future car communication. Software-Defined Networking (SDN) extends the Ethernet control plane with a programming option that can add much value to the resilience, security, and adaptivity of the automotive environment. In this work, we derive a first concept for combining Software-Defined Networking with Time-Sensitive Networking along with an initial evaluation. Our measurements are performed via a simulation that investigates whether an SDN architecture is suitable for time-critical applications in the car. Our findings indicate that the control overhead of SDN can be added without a delay penalty for the TSN traffic when protocols are mapped properly.Comment: To be published at IEEE VTC2019-Sprin

    Outsmarting Network Security with SDN Teleportation

    Full text link
    Software-defined networking is considered a promising new paradigm, enabling more reliable and formally verifiable communication networks. However, this paper shows that the separation of the control plane from the data plane, which lies at the heart of Software-Defined Networks (SDNs), introduces a new vulnerability which we call \emph{teleportation}. An attacker (e.g., a malicious switch in the data plane or a host connected to the network) can use teleportation to transmit information via the control plane and bypass critical network functions in the data plane (e.g., a firewall), and to violate security policies as well as logical and even physical separations. This paper characterizes the design space for teleportation attacks theoretically, and then identifies four different teleportation techniques. We demonstrate and discuss how these techniques can be exploited for different attacks (e.g., exfiltrating confidential data at high rates), and also initiate the discussion of possible countermeasures. Generally, and given today's trend toward more intent-based networking, we believe that our findings are relevant beyond the use cases considered in this paper.Comment: Accepted in EuroSP'1

    ANCHOR: logically-centralized security for Software-Defined Networks

    Get PDF
    While the centralization of SDN brought advantages such as a faster pace of innovation, it also disrupted some of the natural defenses of traditional architectures against different threats. The literature on SDN has mostly been concerned with the functional side, despite some specific works concerning non-functional properties like 'security' or 'dependability'. Though addressing the latter in an ad-hoc, piecemeal way, may work, it will most likely lead to efficiency and effectiveness problems. We claim that the enforcement of non-functional properties as a pillar of SDN robustness calls for a systemic approach. As a general concept, we propose ANCHOR, a subsystem architecture that promotes the logical centralization of non-functional properties. To show the effectiveness of the concept, we focus on 'security' in this paper: we identify the current security gaps in SDNs and we populate the architecture middleware with the appropriate security mechanisms, in a global and consistent manner. Essential security mechanisms provided by anchor include reliable entropy and resilient pseudo-random generators, and protocols for secure registration and association of SDN devices. We claim and justify in the paper that centralizing such mechanisms is key for their effectiveness, by allowing us to: define and enforce global policies for those properties; reduce the complexity of controllers and forwarding devices; ensure higher levels of robustness for critical services; foster interoperability of the non-functional property enforcement mechanisms; and promote the security and resilience of the architecture itself. We discuss design and implementation aspects, and we prove and evaluate our algorithms and mechanisms, including the formalisation of the main protocols and the verification of their core security properties using the Tamarin prover.Comment: 42 pages, 4 figures, 3 tables, 5 algorithms, 139 reference
    • …
    corecore