1,780 research outputs found

    Randomized Two-Process Wait-Free Test-and-Set

    Full text link
    We present the first explicit, and currently simplest, randomized algorithm for 2-process wait-free test-and-set. It is implemented with two 4-valued single writer single reader atomic variables. A test-and-set takes at most 11 expected elementary steps, while a reset takes exactly 1 elementary step. Based on a finite-state analysis, the proofs of correctness and expected length are compressed into one table.Comment: 9 pages, 4 figures, LaTeX source; Submitte

    Verification and Synthesis of Symmetric Uni-Rings for Leads-To Properties

    Full text link
    This paper investigates the verification and synthesis of parameterized protocols that satisfy leadsto properties RQR \leadsto Q on symmetric unidirectional rings (a.k.a. uni-rings) of deterministic and constant-space processes under no fairness and interleaving semantics, where RR and QQ are global state predicates. First, we show that verifying RQR \leadsto Q for parameterized protocols on symmetric uni-rings is undecidable, even for deterministic and constant-space processes, and conjunctive state predicates. Then, we show that surprisingly synthesizing symmetric uni-ring protocols that satisfy RQR \leadsto Q is actually decidable. We identify necessary and sufficient conditions for the decidability of synthesis based on which we devise a sound and complete polynomial-time algorithm that takes the predicates RR and QQ, and automatically generates a parameterized protocol that satisfies RQR \leadsto Q for unbounded (but finite) ring sizes. Moreover, we present some decidability results for cases where leadsto is required from multiple distinct RR predicates to different QQ predicates. To demonstrate the practicality of our synthesis method, we synthesize some parameterized protocols, including agreement and parity protocols

    Traces and logic

    Get PDF

    Testing of Concurrent Programs

    Get PDF
    Testing concurrent systems requires exploring all possible non-deterministic interleavings that the concurrent execution may have, as any of the interleavings may reveal erroneous behaviour. This introduces a new problem: the well-known state space problem, which is often computationally intractable. In the present thesis, this issue will be addressed through: (1) the development of new Partial-Order Reduction Techniques and (2) the combination of static analysis and testing (property-based testing) in order to reduce the combinatorial explosion. As a preliminary result, we have performed an experimental evaluation on the SYCO tool, a CLP-based testing framework for actor-based concurrency, where these techniques have been implemented. Finally, our experiments prove the effectiveness and applicability of the proposed techniques
    corecore