47,193 research outputs found

    Engineering a static verification tool for GPU kernels

    Get PDF
    We report on practical experiences over the last 2.5 years related to the engineering of GPUVerify, a static verification tool for OpenCL and CUDA GPU kernels, plotting the progress of GPUVerify from a prototype to a fully functional and relatively efficient analysis tool. Our hope is that this experience report will serve the verification community by helping to inform future tooling efforts. © 2014 Springer International Publishing

    Functional Requirements-Based Automated Testing for Avionics

    Full text link
    We propose and demonstrate a method for the reduction of testing effort in safety-critical software development using DO-178 guidance. We achieve this through the application of Bounded Model Checking (BMC) to formal low-level requirements, in order to generate tests automatically that are good enough to replace existing labor-intensive test writing procedures while maintaining independence from implementation artefacts. Given that existing manual processes are often empirical and subjective, we begin by formally defining a metric, which extends recognized best practice from code coverage analysis strategies to generate tests that adequately cover the requirements. We then formulate the automated test generation procedure and apply its prototype in case studies with industrial partners. In review, the method developed here is demonstrated to significantly reduce the human effort for the qualification of software products under DO-178 guidance

    A Survey of Symbolic Execution Techniques

    Get PDF
    Many security and software testing applications require checking whether certain properties of a program hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to rule out the existence of any backdoor to bypass a program's authentication. One approach would be to test the program using different, possibly random inputs. As the backdoor may only be hit for very specific program workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides an elegant solution to the problem, by systematically exploring many possible execution paths at the same time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over the last four decades, leading to major practical breakthroughs in a number of prominent software reliability applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions developed in the area, distilling them for a broad audience. The present survey has been accepted for publication at ACM Computing Surveys. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5FvcComment: This is the authors pre-print copy. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5Fv

    A strategy for automatically generating programs in the lucid programming language

    Get PDF
    A strategy for automatically generating and verifying simple computer programs is described. The programs are specified by a precondition and a postcondition in predicate calculus. The programs generated are in the Lucid programming language, a high-level, data-flow language known for its attractive mathematical properties and ease of program verification. The Lucid programming is described, and the automatic program generation strategy is described and applied to several example problems
    • …
    corecore