258,546 research outputs found

    Dosimetric impact of gastrointestinal air column in radiation treatment of pancreatic cancer

    Get PDF
    OBJECTIVE: Dosimetric evaluation of air column in gastrointestinal (GI) structures in intensity modulated radiation therapy (IMRT) of pancreatic cancer. METHODS: Nine sequential patients were retrospectively chosen for dosimetric analysis of air column in the GI apparatus in pancreatic cancer using cone beam CT (CBCT). The four-dimensional CT (4DCT) was used for target and organs at risk (OARs) and non-coplanar IMRT was used for treatment. Once a week, these patients underwent CBCT for air filling, isocentre verification and dose calculations retrospectively. RESULTS: Abdominal air column variation was as great as ±80% between weekly CBCT and 4DCT. Even with such a large air column in the treatment path for pancreatic cancer, changes in anteroposterior dimension were minimal (2.8%). Using IMRT, variations in air column did not correlate dosimetrically with large changes in target volume. An average dosimetric deviation of mere -3.3% and a maximum of -5.5% was observed. CONCLUSION: CBCT revealed large air column in GI structures; however, its impact is minimal for target coverage. Because of the inherent advantage of segmentation in IMRT, where only a small fraction of a given beam passes through the air column, this technique might have an advantage over 3DCRT in treating upper GI malignancies where the daily air column can have significant impact. Advances in knowledge: Radiation treatment of pancreatic cancer has significant challenges due to positioning, imaging of soft tissues and variability of air column in bowels. The dosimetric impact of variable air column is retrospectively studied using CBCT. Even though, the volume of air column changes by ± 80%, its dosimetric impact in IMRT is minimum

    Heterogeneous batch distillation processes for waste solvent recovery in pharmaceutical industry

    Get PDF
    A summary about our experiences in the introduction of heterogeneous entrainers in azeotropic and extractive batch distillation is presented in this work. Essential advantages of the application of heterogeneous entrainers are showed by rigorous simulation and experimental verification in a bench batch distillation column for separating several azeotropic mixtures such as acetonitrile – water, n hexane – ethyl acetate and chloroform – methanol, commonly found in pharmaceutical industry

    Development of catalytic hydrogenation reactors for the fine chemicals industry

    Get PDF
    A survey is given of the problems to be solved before catalytic hydrogenation reactors can be applied in a multiproduct plant in which selectivity problems are experienced. Some results are reported on work done on the reaction kinetics of two multistep model reactions and on mathematical modelling and experimental verification of the models. Since hydrogenation reactions are often very exothermic, cooling by solvent evaporation has been applied where appropriate. Sufficient information has been collected and correlated to enable operation of multiproduct catalytic reactors of the slurry or packed bubble column type; interdependence of operating variables is so complex that a mathematical model is indispensable

    Using multi-agent systems to go beyond temporal patterns verification

    Get PDF
    A key step in formal verification is the translation of requirements into logic formulae. Various flavours of temporal logic are commonly used in academia and in industry to capture, among others, liveness and safety requirements. In the past two decades there has been a substantial amount of work in the area of verification of extensions of temporal logic. In this column I will provide a high level overview of some work in this area, focussing in particular on the verification of temporal-epistemic properties, showing how temporal-epistemic logics can be used to capture requirements that are common in many concrete systems, and describing a model checker for multi-agent systems called MCMAS
    • …
    corecore