20,822 research outputs found

    Glimmers: Resolving the Privacy/Trust Quagmire

    Full text link
    Many successful services rely on trustworthy contributions from users. To establish that trust, such services often require access to privacy-sensitive information from users, thus creating a conflict between privacy and trust. Although it is likely impractical to expect both absolute privacy and trustworthiness at the same time, we argue that the current state of things, where individual privacy is usually sacrificed at the altar of trustworthy services, can be improved with a pragmatic GlimmerGlimmer ofof TrustTrust, which allows services to validate user contributions in a trustworthy way without forfeiting user privacy. We describe how trustworthy hardware such as Intel's SGX can be used client-side -- in contrast to much recent work exploring SGX in cloud services -- to realize the Glimmer architecture, and demonstrate how this realization is able to resolve the tension between privacy and trust in a variety of cases

    Formal verification of an autonomous personal robotic assistant

    Get PDF
    Human–robot teams are likely to be used in a variety of situations wherever humans require the assistance of robotic systems. Obvious examples include healthcare and manufacturing, in which people need the assistance of machines to perform key tasks. It is essential for robots working in close proximity to people to be both safe and trustworthy. In this paper we examine formal verification of a high-level planner/scheduler for autonomous personal robotic assistants such as Care-O-bot ™ . We describe how a model of Care-O-bot and its environment was developed using Brahms, a multiagent workflow language. Formal verification was then carried out by translating this to the input language of an existing model checker. Finally we present some formal verification results and describe how these could be complemented by simulation-based testing and realworld end-user validation in order to increase the practical and perceived safety and trustworthiness of robotic assistants

    Hybrid Multiresolution Simulation & Model Checking: Network-On-Chip Systems

    Get PDF
    abstract: Designers employ a variety of modeling theories and methodologies to create functional models of discrete network systems. These dynamical models are evaluated using verification and validation techniques throughout incremental design stages. Models created for these systems should directly represent their growing complexity with respect to composition and heterogeneity. Similar to software engineering practices, incremental model design is required for complex system design. As a result, models at early increments are significantly simpler relative to real systems. While experimenting (verification or validation) on models at early increments are computationally less demanding, the results of these experiments are less trustworthy and less rewarding. At any increment of design, a set of tools and technique are required for controlling the complexity of models and experimentation. A complex system such as Network-on-Chip (NoC) may benefit from incremental design stages. Current design methods for NoC rely on multiple models developed using various modeling frameworks. It is useful to develop frameworks that can formalize the relationships among these models. Fine-grain models are derived using their coarse-grain counterparts. Moreover, validation and verification capability at various design stages enabled through disciplined model conversion is very beneficial. In this research, Multiresolution Modeling (MRM) is used for system level design of NoC. MRM aids in creating a family of models at different levels of scale and complexity with well-formed relationships. In addition, a variant of the Discrete Event System Specification (DEVS) formalism is proposed which supports model checking. Hierarchical models of Network-on-Chip components may be created at different resolutions while each model can be validated using discrete-event simulation and verified via state exploration. System property expressions are defined in the DEVS language and developed as Transducers which can be applied seamlessly for model checking and simulation purposes. Multiresolution Modeling with verification and validation capabilities of this framework complement one another. MRM manages the scale and complexity of models which in turn can reduces V&V time and effort and conversely the V&V helps ensure correctness of models at multiple resolutions. This framework is realized through extending the DEVS-Suite simulator and its applicability demonstrated for exemplar NoC models.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS - a collection of Technical Notes Part 1

    Get PDF
    This report provides an introduction and overview of the Technical Topic Notes (TTNs) produced in the Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS (Tigars) project. These notes aim to support the development and evaluation of autonomous vehicles. Part 1 addresses: Assurance-overview and issues, Resilience and Safety Requirements, Open Systems Perspective and Formal Verification and Static Analysis of ML Systems. Part 2: Simulation and Dynamic Testing, Defence in Depth and Diversity, Security-Informed Safety Analysis, Standards and Guidelines

    Discovery and Selection of Certified Web Services Through Registry-Based Testing and Verification

    Get PDF
    Reliability and trust are fundamental prerequisites for the establishment of functional relationships among peers in a Collaborative Networked Organisation (CNO), especially in the context of Virtual Enterprises where economic benefits can be directly at stake. This paper presents a novel approach towards effective service discovery and selection that is no longer based on informal, ambiguous and potentially unreliable service descriptions, but on formal specifications that can be used to verify and certify the actual Web service implementations. We propose the use of Stream X-machines (SXMs) as a powerful modelling formalism for constructing the behavioural specification of a Web service, for performing verification through the generation of exhaustive test cases, and for performing validation through animation or model checking during service selection

    Securely Launching Virtual Machines on Trustworthy Platforms in a Public Cloud

    Get PDF
    In this paper we consider the Infrastructure-as-a-Service (IaaS) cloud model which allows cloud users to run their own virtual machines (VMs) on available cloud computing resources. IaaS gives enterprises the possibility to outsource their process workloads with minimal effort and expense. However, one major problem with existing approaches of cloud leasing, is that the users can only get contractual guarantees regarding the integrity of the offered platforms. The fact that the IaaS user himself or herself cannot verify the provider promised cloud platform integrity, is a security risk which threatens to prevent the IaaS business in general. In this paper we address this issue and propose a novel secure VM launch protocol using Trusted Computing techniques. This protocol allows the cloud IaaS users to securely bind the VM to a trusted computer configuration such that the clear text VM only will run on a platform that has been booted into a trustworthy state. This capability builds user confidence and can serve as an important enabler for creating trust in public clouds. We evaluate the feasibility of our proposed protocol via a full scale system implementation and perform a system security analysis

    Routing-Verification-as-a-Service (RVaaS): Trustworthy Routing Despite Insecure Providers

    Full text link
    Computer networks today typically do not provide any mechanisms to the users to learn, in a reliable manner, which paths have (and have not) been taken by their packets. Rather, it seems inevitable that as soon as a packet leaves the network card, the user is forced to trust the network provider to forward the packets as expected or agreed upon. This can be undesirable, especially in the light of today's trend toward more programmable networks: after a successful cyber attack on the network management system or Software-Defined Network (SDN) control plane, an adversary in principle has complete control over the network. This paper presents a low-cost and efficient solution to detect misbehaviors and ensure trustworthy routing over untrusted or insecure providers, in particular providers whose management system or control plane has been compromised (e.g., using a cyber attack). We propose Routing-Verification-as-a-Service (RVaaS): RVaaS offers clients a flexible interface to query information relevant to their traffic, while respecting the autonomy of the network provider. RVaaS leverages key features of OpenFlow-based SDNs to combine (passive and active) configuration monitoring, logical data plane verification and actual in-band tests, in a novel manner
    • …
    corecore