66,258 research outputs found

    Building validation tools for knowledge-based systems

    Get PDF
    The Expert Systems Validation Associate (EVA), a validation system under development at the Lockheed Artificial Intelligence Center for more than a year, provides a wide range of validation tools to check the correctness, consistency and completeness of a knowledge-based system. A declarative meta-language (higher-order language), is used to create a generic version of EVA to validate applications written in arbitrary expert system shells. The architecture and functionality of EVA are presented. The functionality includes Structure Check, Logic Check, Extended Structure Check (using semantic information), Extended Logic Check, Semantic Check, Omission Check, Rule Refinement, Control Check, Test Case Generation, Error Localization, and Behavior Verification

    Approaches to the verification of rule-based expert systems

    Get PDF
    Expert systems are a highly useful spinoff of artificial intelligence research. One major stumbling block to extended use of expert systems is the lack of well-defined verification and validation (V and V) methodologies. Since expert systems are computer programs, the definitions of verification and validation from conventional software are applicable. The primary difficulty with expert systems is the use of development methodologies which do not support effective V and V. If proper techniques are used to document requirements, V and V of rule-based expert systems is possible, and may be easier than with conventional code. For NASA applications, the flight technique panels used in previous programs should provide an excellent way to verify the rules used in expert systems. There are, however, some inherent differences in expert systems that will affect V and V considerations

    A formal approach to validation and verification for knowledge-based control systems

    Get PDF
    As control systems become more complex in response to desires for greater system flexibility, performance and reliability, the promise is held out that artificial intelligence might provide the means for building such systems. An obstacle to the use of symbolic processing constructs in this domain is the need for verification and validation (V and V) of the systems. Techniques currently in use do not seem appropriate for knowledge-based software. An outline of a formal approach to V and V for knowledge-based control systems is presented

    IoT Detection System for Mildew Disease in Roses Using Neural Networks and Image Analysis

    Get PDF
    Artificial intelligence presents different approaches, one of these is the use of neural network algorithms, a particular context is the farming sector and these algorithms support the detection of diseases in flowers, this work presents a system to detect downy mildew disease in roses through the analysis of images through neural networks and the correlation of environmental variables through an experiment in a controlled environment, for which an IoT platform was developed that integrated an artificial intelligence module. For the verification of the model, three different models of neural networks in a controlled greenhouse were experimentally compared and a proposed model was obtained for the training and validation sets of two categories of healthy roses and diseased roses with 89% training and 11% recovery. validation and it was determined that the relative humidity variable can influence the development and appearance of Downy Mildew disease when its value is above 85% for a prolonged period

    Evaluation of Verification Approaches Applied to a Nonlinear Control System

    Get PDF
    As the demand for increasingly complex and autonomous systems grows, designers may consider computational and artificial intelligence methods for more advanced, re- active control. While the performance gained by such increasingly intelligent systems may be superior to traditional control techniques, the lack of transparency in the systems and opportunity for emergent behavior limits their application in the field. New verification and validation methods must be developed to ensure the output of such controllers do not put the system or any people interacting with it in danger. This challenge was highlighted by the former Air Force Chief Scientist in his 2010 Technology Horizons Report, stating \It is possible to develop systems having high levels of autonomy, but it is the lack of suitable [verification and validation] (V&V) methods that prevents all but relatively low levels of autonomy from being certified for use

    Expert system verification and validation study. Delivery 3A and 3B: Trip summaries

    Get PDF
    Key results are documented from attending the 4th workshop on verification, validation, and testing. The most interesting part of the workshop was when representatives from the U.S., Japan, and Europe presented surveys of VV&T within their respective regions. Another interesting part focused on current efforts to define industry standards for artificial intelligence and how that might affect approaches to VV&T of expert systems. The next part of the workshop focused on VV&T methods of applying mathematical techniques to verification of rule bases and techniques for capturing information relating to the process of developing software. The final part focused on software tools. A summary is also presented of the EPRI conference on 'Methodologies, Tools, and Standards for Cost Effective Reliable Software Verification and Validation. The conference was divided into discussion sessions on the following issues: development process, automated tools, software reliability, methods, standards, and cost/benefit considerations

    A Framework for the Verification and Validation of Artificial Intelligence Machine Learning Systems

    Get PDF
    An effective verification and validation (V&V) process framework for the white-box and black-box testing of artificial intelligence (AI) machine learning (ML) systems is not readily available. This research uses grounded theory to develop a framework that leads to the most effective and informative white-box and black-box methods for the V&V of AI ML systems. Verification of the system ensures that the system adheres to the requirements and specifications developed and given by the major stakeholders, while validation confirms that the system properly performs with representative users in the intended environment and does not perform in an unexpected manner. Beginning with definitions, descriptions, and examples of ML processes and systems, the research results identify a clear and general process to effectively test these systems. The developed framework ensures the most productive and accurate testing results. Formerly, and occasionally still, the system definition and requirements exist in scattered documents that make it difficult to integrate, trace, and test through V&V. Modern system engineers along with system developers and stakeholders collaborate to produce a full system model using model-based systems engineering (MBSE). MBSE employs a Unified Modeling Language (UML) or System Modeling Language (SysML) representation of the system and its requirements that readily passes from each stakeholder for system information and additional input. The comprehensive and detailed MBSE model allows for direct traceability to the system requirements. xxiv To thoroughly test a ML system, one performs either white-box or black-box testing or both. Black-box testing is a testing method in which the internal model structure, design, and implementation of the system under test is unknown to the test engineer. Testers and analysts are simply looking at performance of the system given input and output. White-box testing is a testing method in which the internal model structure, design, and implementation of the system under test is known to the test engineer. When possible, test engineers and analysts perform both black-box and white-box testing. However, sometimes testers lack authorization to access the internal structure of the system. The researcher captures this decision in the ML framework. No two ML systems are exactly alike and therefore, the testing of each system must be custom to some degree. Even though there is customization, an effective process exists. This research includes some specialized methods, based on grounded theory, to use in the testing of the internal structure and performance. Through the study and organization of proven methods, this research develops an effective ML V&V framework. Systems engineers and analysts are able to simply apply the framework for various white-box and black-box V&V testing circumstances

    Designing the automatic transformation of visual languages

    Get PDF
    AbstractThe design process of complex systems requires a precise checking of the functional and dependability attributes of the target design. The growing complexity of systems necessitates the use of formal methods, as the exhaustiveness of checks performed by the traditional simulation and testing is insufficient.For this reason, the mathematical models of various formal verification tools are automatically derived from UML-diagrams of the model by mathematical transformations guaranteeing a complete consistency between the target design and the models of verification and validation tools.In the current paper, a general framework for an automated model transformation system is presented. The method starts from a uniform visual description and a formal proof concept of the particular transformations by integrating the powerful computational paradigm of graph transformation, planner algorithms of artificial intelligence, and various concepts of computer engineering

    Agents and Robots for Reliable Engineered Autonomy

    Get PDF
    This book contains the contributions of the Special Issue entitled "Agents and Robots for Reliable Engineered Autonomy". The Special Issue was based on the successful first edition of the "Workshop on Agents and Robots for reliable Engineered Autonomy" (AREA 2020), co-located with the 24th European Conference on Artificial Intelligence (ECAI 2020). The aim was to bring together researchers from autonomous agents, as well as software engineering and robotics communities, as combining knowledge from these three research areas may lead to innovative approaches that solve complex problems related to the verification and validation of autonomous robotic systems
    • …
    corecore