29,919 research outputs found

    Speaker verification using sequence discriminant support vector machines

    Get PDF
    This paper presents a text-independent speaker verification system using support vector machines (SVMs) with score-space kernels. Score-space kernels generalize Fisher kernels and are based on underlying generative models such as Gaussian mixture models (GMMs). This approach provides direct discrimination between whole sequences, in contrast with the frame-level approaches at the heart of most current systems. The resultant SVMs have a very high dimensionality since it is related to the number of parameters in the underlying generative model. To address problems that arise in the resultant optimization we introduce a technique called spherical normalization that preconditions the Hessian matrix. We have performed speaker verification experiments using the PolyVar database. The SVM system presented here reduces the relative error rates by 34% compared to a GMM likelihood ratio system

    NPLDA: A Deep Neural PLDA Model for Speaker Verification

    Full text link
    The state-of-art approach for speaker verification consists of a neural network based embedding extractor along with a backend generative model such as the Probabilistic Linear Discriminant Analysis (PLDA). In this work, we propose a neural network approach for backend modeling in speaker recognition. The likelihood ratio score of the generative PLDA model is posed as a discriminative similarity function and the learnable parameters of the score function are optimized using a verification cost. The proposed model, termed as neural PLDA (NPLDA), is initialized using the generative PLDA model parameters. The loss function for the NPLDA model is an approximation of the minimum detection cost function (DCF). The speaker recognition experiments using the NPLDA model are performed on the speaker verificiation task in the VOiCES datasets as well as the SITW challenge dataset. In these experiments, the NPLDA model optimized using the proposed loss function improves significantly over the state-of-art PLDA based speaker verification system.Comment: Published in Odyssey 2020, the Speaker and Language Recognition Workshop (VOiCES Special Session). Link to GitHub Implementation: https://github.com/iiscleap/NeuralPlda. arXiv admin note: substantial text overlap with arXiv:2001.0703

    Exploring the Encoding Layer and Loss Function in End-to-End Speaker and Language Recognition System

    Full text link
    In this paper, we explore the encoding/pooling layer and loss function in the end-to-end speaker and language recognition system. First, a unified and interpretable end-to-end system for both speaker and language recognition is developed. It accepts variable-length input and produces an utterance level result. In the end-to-end system, the encoding layer plays a role in aggregating the variable-length input sequence into an utterance level representation. Besides the basic temporal average pooling, we introduce a self-attentive pooling layer and a learnable dictionary encoding layer to get the utterance level representation. In terms of loss function for open-set speaker verification, to get more discriminative speaker embedding, center loss and angular softmax loss is introduced in the end-to-end system. Experimental results on Voxceleb and NIST LRE 07 datasets show that the performance of end-to-end learning system could be significantly improved by the proposed encoding layer and loss function.Comment: Accepted for Speaker Odyssey 201

    End-to-End Photo-Sketch Generation via Fully Convolutional Representation Learning

    Full text link
    Sketch-based face recognition is an interesting task in vision and multimedia research, yet it is quite challenging due to the great difference between face photos and sketches. In this paper, we propose a novel approach for photo-sketch generation, aiming to automatically transform face photos into detail-preserving personal sketches. Unlike the traditional models synthesizing sketches based on a dictionary of exemplars, we develop a fully convolutional network to learn the end-to-end photo-sketch mapping. Our approach takes whole face photos as inputs and directly generates the corresponding sketch images with efficient inference and learning, in which the architecture are stacked by only convolutional kernels of very small sizes. To well capture the person identity during the photo-sketch transformation, we define our optimization objective in the form of joint generative-discriminative minimization. In particular, a discriminative regularization term is incorporated into the photo-sketch generation, enhancing the discriminability of the generated person sketches against other individuals. Extensive experiments on several standard benchmarks suggest that our approach outperforms other state-of-the-art methods in both photo-sketch generation and face sketch verification.Comment: 8 pages, 6 figures. Proceeding in ACM International Conference on Multimedia Retrieval (ICMR), 201

    Towards the ontology-based approach for factual information matching

    Get PDF
    Factual information is information based on facts or relating to facts. The reliability of automatically extracted facts is the main problem of processing factual information. The fact retrieval system remains one of the most effective tools for identifying the information for decision-making. In this work, we explore how can natural language processing methods and problem domain ontology help to check contradictions and mismatches in facts automatically
    corecore