644 research outputs found

    Hybrid Publicly Verifiable Computation

    Get PDF
    Publicly Verifiable Outsourced Computation (PVC) allows weak devices to delegate com-putations to more powerful servers, and to verify the correctness of results. Delegation and verification rely only on public parameters, and thus PVC lends itself to large multi-user systems where entities need not be registered. In such settings, individual user requirements may be diverse and cannot be realised with current PVC solutions. In this paper, we in-troduce Hybrid PVC (HPVC) which, with a single setup stage, provides a flexible solution to outsourced computation supporting multiple modes: (i) standard PVC, (ii) PVC with cryptographically enforced access control policies restricting the servers that may perform a given computation, and (iii) a reversed model of PVC which we call Verifiable Delegable Computation (VDC) where data is held remotely by servers. Entities may dynamically play the role of delegators or servers as required

    Private Outsourcing of Polynomial Evaluation and Matrix Multiplication using Multilinear Maps

    Full text link
    {\em Verifiable computation} (VC) allows a computationally weak client to outsource the evaluation of a function on many inputs to a powerful but untrusted server. The client invests a large amount of off-line computation and gives an encoding of its function to the server. The server returns both an evaluation of the function on the client's input and a proof such that the client can verify the evaluation using substantially less effort than doing the evaluation on its own. We consider how to privately outsource computations using {\em privacy preserving} VC schemes whose executions reveal no information on the client's input or function to the server. We construct VC schemes with {\em input privacy} for univariate polynomial evaluation and matrix multiplication and then extend them such that the {\em function privacy} is also achieved. Our tool is the recently developed {mutilinear maps}. The proposed VC schemes can be used in outsourcing {private information retrieval (PIR)}.Comment: 23 pages, A preliminary version appears in the 12th International Conference on Cryptology and Network Security (CANS 2013

    VD-PSI : verifiable delegated private set intersection on outsourced private datasets

    Get PDF
    Private set intersection (PSI) protocols have many real world applications. With the emergence of cloud computing the need arises for PSI protocols on outsourced datasets where the computation is delegated to the cloud. However, due to the possibility of cloud misbehaviors, it is essential to verify the correctness of any delegated computation, and the integrity of any outsourced datasets. Verifiable Computation on private datasets that does not leak any information about the data is very challenging, especially when the datasets are outsourced independently by different clients. In this paper we present VD-PSI, a protocol that allows multiple clients to outsource their private datasets and delegate computation of set intersection to the cloud, while being able to verify the correctness of the result. Clients can independently prepare and upload their datasets, and with their agreement can verifiably delegate the computation of set intersection an unlimited number of times, without the need to download or maintain a local copy of their data. The protocol ensures that the cloud learns nothing about the datasets and the intersection. VD-PSI is efficient as its verification cost is linear to the intersection cardinality, and its computation and communication costs are linear to the dataset cardinality. Also, we provide a formal security analysis in the standard model

    Extended Functionality in Verifiable Searchable Encryption

    Get PDF
    Abstract. When outsourcing the storage of sensitive data to an (un-trusted) remote server, a data owner may choose to encrypt the data beforehand to preserve confidentiality. However, it is then difficult to efficiently retrieve specific portions of the data as the server is unable to identify the relevant information. Searchable encryption has been well studied as a solution to this problem, allowing data owners and other au-thorised users to generate search queries which the server may execute over the encrypted data to identify relevant data portions. However, many current schemes lack two important properties: verifia-bility of search results, and expressive queries. We introduce Extended Verifiable Searchable Encryption (eVSE) that permits a user to verify that search results are correct and complete. We also permit verifiabl

    CUPS : Secure Opportunistic Cloud of Things Framework based on Attribute Based Encryption Scheme Supporting Access Policy Update

    Get PDF
    The ever‐growing number of internet connected devices, coupled with the new computing trends, namely within emerging opportunistic networks, engenders several security concerns. Most of the exchanged data between the internet of things (IoT) devices are not adequately secured due to resource constraints on IoT devices. Attribute‐based encryption is a promising cryptographic mechanism suitable for distributed environments, providing flexible access control to encrypted data contents. However, it imposes high decryption costs, and does not support access policy update, for highly dynamic environments. This paper presents CUPS, an ABE‐based framework for opportunistic cloud of things applications, that securely outsources data decryption process to edge nodes in order to reduce the computation overhead on the user side. CUPS allows end‐users to offload most of the decryption overhead to an edge node and verify the correctness of the received partially decrypted data from the edge node. Moreover, CUPS provides the access policy update feature with neither involving a proxy‐server, nor re‐encrypting the enciphered data contents and re‐distributing the users' secret keys. The access policy update feature in CUPS does not affect the size of the message received by the end‐user, which reduces the bandwidth and the storage usage. Our comprehensive theoretical analysis proves that CUPS outperforms existing schemes in terms of functionality, communication and computation overheads

    Noninteractive Verifiable Outsourcing Algorithm for Bilinear Pairing with Improved Checkability

    Get PDF
    It is well known that the computation of bilinear pairing is the most expensive operation in pairing-based cryptography. In this paper, we propose a noninteractive verifiable outsourcing algorithm of bilinear pairing based on two servers in the one-malicious model. The outsourcer need not execute any expensive operation, such as scalar multiplication and modular exponentiation. Moreover, the outsourcer could detect any failure with a probability close to 1 if one of the servers misbehaves. Therefore, the proposed algorithm improves checkability and decreases communication cost compared with the previous ones. Finally, we utilize the proposed algorithm as a subroutine to achieve an anonymous identity-based encryption (AIBE) scheme with outsourced decryption and an identity-based signature (IBS) scheme with outsourced verification
    • 

    corecore