4 research outputs found

    A systematic approach to normalization in probabilistic models

    Get PDF
    Open access funding provided by Austrian Science Fund (FWF). This research was partly supported by the Austrian Science Fund (FWF) Project Number P25905-N23 (ADmIRE). This work has been supported by the Self-Optimizer project (FFG 852624) in the EUROSTARS programme, funded by EUREKA, the BMWFW and the European Union

    Retrieval for Extremely Long Queries and Documents with RPRS: a Highly Efficient and Effective Transformer-based Re-Ranker

    Full text link
    Retrieval with extremely long queries and documents is a well-known and challenging task in information retrieval and is commonly known as Query-by-Document (QBD) retrieval. Specifically designed Transformer models that can handle long input sequences have not shown high effectiveness in QBD tasks in previous work. We propose a Re-Ranker based on the novel Proportional Relevance Score (RPRS) to compute the relevance score between a query and the top-k candidate documents. Our extensive evaluation shows RPRS obtains significantly better results than the state-of-the-art models on five different datasets. Furthermore, RPRS is highly efficient since all documents can be pre-processed, embedded, and indexed before query time which gives our re-ranker the advantage of having a complexity of O(N) where N is the total number of sentences in the query and candidate documents. Furthermore, our method solves the problem of the low-resource training in QBD retrieval tasks as it does not need large amounts of training data, and has only three parameters with a limited range that can be optimized with a grid search even if a small amount of labeled data is available. Our detailed analysis shows that RPRS benefits from covering the full length of candidate documents and queries.Comment: Accepted at ACM Transactions on Information Systems (ACM TOIS journal

    Weighting Passages Enhances Accuracy

    Get PDF
    We observe that in curated documents the distribution of the occurrences of salient terms, e.g., terms with a high Inverse Document Frequency, is not uniform, and such terms are primarily concentrated towards the beginning and the end of the document. Exploiting this observation, we propose a novel version of the classical BM25 weighting model, called BM25 Passage (BM25P), which scores query results by computing a linear combination of term statistics in the different portions of the document. We study a multiplicity of partitioning schemes of document content into passages and compute the collection-dependent weights associated with them on the basis of the distribution of occurrences of salient terms in documents. Moreover, we tune BM25P hyperparameters and investigate their impact on ad hoc document retrieval through fully reproducible experiments conducted using four publicly available datasets. Our findings demonstrate that our BM25P weighting model markedly and consistently outperforms BM25 in terms of effectiveness by up to 17.44% in NDCG@5 and 85% in NDCG@1, and up to 21% in MRR
    corecore