534 research outputs found

    Approaches and possible improvements in the area of multibody dynamics modeling

    Get PDF
    A wide ranging look is taken at issues involved in the dynamic modeling of complex, multibodied orbiting space systems. Capabilities and limitations of two major codes (DISCOS, TREETOPS) are assessed and possible extensions to the CONTOPS software are outlined. In addition, recommendations are made concerning the direction future development should take in order to achieve higher fidelity, more computationally efficient multibody software solutions

    The pointing errors of geosynchronous satellites

    Get PDF
    A study of the correlation between cloud motion and wind field was initiated. Cloud heights and displacements were being obtained from a ceilometer and movie pictures, while winds were measured from pilot balloon observations on a near-simultaneous basis. Cloud motion vectors were obtained from time-lapse cloud pictures, using the WINDCO program, for 27, 28 July, 1969, in the Atlantic. The relationship between observed features of cloud clusters and the ambient wind field derived from cloud trajectories on a wide range of space and time scales is discussed

    Simulation of actively controlled spacecraft with flexible appendages

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76688/1/AIAA-25388-716.pd

    Dynamics and control of advanced space vehicles, volume 1

    Get PDF
    The following studies are reported: (1) Modal analyses of elastic continua for Liapunov stability analysis of flexible spacecraft; (2) development of general purpose simulation equations for arbitrary spacecraft; (3) evaluation of alternative mathematical models for elastic components of spacecraft; and (4) examination of the influence of vehicle flexibility on spacecraft attitude control system performance

    The design and development of a constant-speed solar array drive

    Get PDF
    The design and development of a constant-speed solar array drive system for use in high power communications satellites is described. The relationship between continuity of motion in the solar array drive and spacecraft attitude disturbance is investigated. The selection of the system design based on the design requirements including spacecraft disturbance is discussed. The system comprises two main parts: the drive mechanism including small angle stepper motor and reduction gearing and the control electronics including ministepping drive circuits, such that a very small output step size is achieved. Factors contributing to discontinuities in motion are identified and discussed. Test methods for measurement of very small amplitudes of discontinuity at low rotational rates are described to assist in the testing of similar mechanisms

    Control oriented modelling of an integrated attitude and vibration suppression architecture for large space structures

    Get PDF
    This thesis is divided into two parts. The main focus of the research, namely active vibration control for large flexible spacecraft, is exposed in Part I and, in parallel, the topic of machine learning techniques for modern space applications is described in Part II. In particular, this thesis aims at proposing an end-to-end general architecture for an integrated attitude-vibration control system, starting from the design of structural models to the synthesis of the control laws. To this purpose, large space structures based on realistic missions are investigated as study cases, in accordance with the tendency of increasing the size of the scientific instruments to improve their sensitivity, being the drawback an increase of its overall flexibility. An active control method is therefore investigated to guarantee satisfactory pointing and maximum deformation by avoiding classical stiffening methods. Therefore, the instrument is designed to be supported by an active deployable frame hosting an optimal minimum set of collocated smart actuators and sensors. Different spatial configurations for the placement of the distributed network of active devices are investigated, both at closed-loop and open-loop levels. Concerning closed-loop techniques, a method to optimally place the poles of the system via a Direct Velocity Feedback (DVF) controller is proposed to identify simultaneously the location and number of active devices for vibration control with an in-cascade optimization technique. Then, two general and computationally efficient open-loop placement techniques, namely Gramian and Modal Strain Energy (MSE)-based methods, are adopted as opposed to heuristic algorithms, which imply high computational costs and are generally not suitable for high-dimensional systems, to propose a placement architecture for generically shaped tridimensional space structures. Then, an integrated robust control architecture for the spacecraft is presented as composed of both an attitude control scheme and a vibration control system. To conclude the study, attitude manoeuvres are performed to excite main flexible modes and prove the efficacy of both attitude and vibration control architectures. Moreover, Part II is dedicated to address the problem of improving autonomy and self-awareness of modern spacecraft, by using machine-learning based techniques to carry out Failure Identification for large space structures and improving the pointing performance of spacecraft (both flexible satellite with sloshing models and small rigid platforms) when performing repetitive Earth Observation manoeuvres

    A digital computer program for the dynamic interaction simulation of controls and structure (DISCOS), volume 1

    Get PDF
    A theoretical development and associated digital computer program system for the dynamic simulation and stability analysis of passive and actively controlled spacecraft are presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system is used to investigate total system dynamic characteristics, including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. In addition, the program system is used for designing attitude control systems and for evaluating total dynamic system performance, including time domain response and frequency domain stability analyses

    Attitude stability of spinning flexible spacecraft

    Get PDF
    The stability of spinning flexible satellites in a force-free environment was analyzed. The satellite was modeled as a rigid core having attached to it a flexible appendage idealized as a collection of particles (point masses) interconnected by springs. Both Liapunov and Routh-Hurwitz stability procedures are used. In the former, the Hamiltonian of the system, constrained through the angular momentum integral so as to admit complete damping, is used as a testing function. Equations of motion are written using the hybrid coordinate formulation, which readily accepts a modal coordinate transformation ultimately allowing truncation to a level amenable to literal stability analysis. Closed form stability criteria are generated for the first mode of a restricted appendage model lying in a plane containing the system center of mass and orthogonal to the spin axis. The effects of spin on flexible bodies are discussed by considering a very elementary particle model. Control of passively unstable spacecraft is briefly considered

    Modeling and Slew-Maneuver Control of a Flexible Spacecraft

    Get PDF
    Slew-maneuver control problem is studied for a flexible spacecraft consisting of a rigid main body to which a long flexible appendage is attached. Nonlinear dynamical system models are developed using both distributed parameter modeling and discrete parameter modeling; these models are shown to be equivalent for appropriately chosen system parameters. Lyapunov-based nonlinear feedback controllers are designed for the control of rigid-body motion while suppressing the lowest frequency vibrational mode. In case of large-angle maneuvers, these nonlinear controllers are shown to outperform the linearization-based controllers including the filtered proportional-derivative (PD) controllers as well as the linear quadratic regulator (LQR) controllers. Finally, the theoretical development is applied to a benchmark flexible system and a number of computer simulations are included to illustrate the results

    Control and dynamics of a flexible spacecraft during stationkeeping maneuvers

    Get PDF
    A case study of a spacecraft having flexible solar arrays is presented. A stationkeeping attitude control mode using both earth and rate gyro reference signals and a flexible vehicle dynamics modeling and implementation is discussed. The control system is designed to achieve both pointing accuracy and structural mode stability during stationkeeping maneuvers. Reduction of structural mode interactions over the entire mode duration is presented. The control mode using a discrete time observer structure is described to show the convergence of the spacecraft attitude transients during Delta-V thrusting maneuvers without preloading thrusting bias to the onboard control processor. The simulation performance using the three axis, body stabilized nonlinear dynamics is provided. The details of a five body dynamics model are discussed. The spacecraft is modeled as a central rigid body having cantilevered flexible antennas, a pair of flexible articulated solar arrays, and to gimballed momentum wheels. The vehicle is free to undergo unrestricted rotations and translations relative to inertial space. A direct implementation of the equations of motion is compared to an indirect implementation that uses a symbolic manipulation software to generate rigid body equations
    • …
    corecore