46 research outputs found

    Methods for the improvement of power resource prediction and residual range estimation for offroad unmanned ground vehicles

    Get PDF
    Unmanned Ground Vehicles (UGVs) are becoming more widespread in their deployment. Advances in technology have improved not only their reliability but also their ability to perform complex tasks. UGVs are particularly attractive for operations that are considered unsuitable for human operatives. These include dangerous operations such as explosive ordnance disarmament, as well as situations where human access is limited including planetary exploration or search and rescue missions involving physically small spaces. As technology advances, UGVs are gaining increased capabilities and consummate increased complexity, allowing them to participate in increasingly wide range of scenarios. UGVs have limited power reserves that can restrict a UGV’s mission duration and also the range of capabilities that it can deploy. As UGVs tend towards increased capabilities and complexity, extra burden is placed on the already stretched power resources. Electric drives and an increasing array of processors, sensors and effectors, all need sufficient power to operate. Accurate prediction of mission power requirements is therefore of utmost importance, especially in safety critical scenarios where the UGV must complete an atomic task or risk the creation of an unsafe environment due to failure caused by depleted power. Live energy prediction for vehicles that traverse typical road surfaces is a wellresearched topic. However, this is not sufficient for modern UGVs as they are required to traverse a wide variety of terrains that may change considerably with prevailing environmental conditions. This thesis addresses the gap by presenting a novel approach to both off and on-line energy prediction that considers the effects of weather conditions on a wide variety of terrains. The prediction is based upon nonlinear polynomial regression using live sensor data to improve upon the accuracy provided by current methods. The new approach is evaluated and compared to existing algorithms using a custom ‘UGV mission power’ simulation tool. The tool allows the user to test the accuracy of various mission energy prediction algorithms over a specified mission routes that include a variety of terrains and prevailing weather conditions. A series of experiments that test and record the ‘real world’ power use of a typical small electric drive UGV are also performed. The tests are conducted for a variety of terrains and weather conditions and the empirical results are used to validate the results of the simulation tool. The new algorithm showed a significant improvement compared with current methods, which will allow for UGVs deployed in real world scenarios where they must contend with a variety of terrains and changeable weather conditions to make accurate energy use predictions. This enables more capabilities to be deployed with a known impact on remaining mission power requirement, more efficient mission durations through avoiding the need to maintain excessive estimated power reserves and increased safety through reduced risk of aborting atomic operations in safety critical scenarios. As supplementary contribution, this work created a power resource usage and prediction test bed UGV and resulting data-sets as well as a novel simulation tool for UGV mission energy prediction. The tool implements a UGV model with accurate power use characteristics, confirmed by an empirical test series. The tool can be used to test a wide variety of scenarios and power prediction algorithms and could be used for the development of further mission energy prediction technology or be used as a mission energy planning tool

    Acceptance Testing and Energy-based Mission Reliability in Unmanned Ground Vehicles.

    Full text link
    The objective of this research is to explore and develop new methodologies and techniques to improve UGV mission reliability. This dissertation focuses on two research issues that are critical in the following UGV deployment phases: (1) prior to field deployment to remove design deficiencies; and (2) during field usage to prevent mission failures. Four specific research topics are accomplished. The first topic focuses on simulation-based acceptance testing. A general framework is proposed to integrate dynamic and static simulations. Statistical hypothesis testing is used to compare static and dynamic simulations to determine when a simple static simulation can be used to replace the complex dynamic simulation. Results show that the static simulation can be used when a failure mechanism is not significantly affected by the dynamic characteristics of the vehicle. The remaining research topics aim at prevention of operational failures due to unexpected energy depletion. A model-based Bayesian prediction framework integrated with a dynamic vehicle model is proposed in the second research topic, which improves traditional approaches for estimation and prediction. The Bayesian framework combines mission prior knowledge with real-time measurements for adaptive prediction of end-of-mission energy requirement. Experimental studies were conducted, which validated and demonstrated the advantages of the framework on roads with different surface types and grades. The third research topic, entitled real-time energy reliable path planning, builds upon the above mentioned prediction framework to identify the most energy reliable path in a stochastic network with unknown and correlated arc lengths. Since traditional sequential optimization techniques cannot be directly applied to this problem, a heuristic approach based on two stage exploration/exploitation is proposed to identify the most reliable path. The framework, which minimizes the cost of exploration, outperforms traditional path planning approaches. In the final research topic, the impact of operator driving style on mission energy requirements is investigated using statistical response surface. While the previous topics help with overall mission planning regardless of the operator’s driving style, here, improving the driving style to increase energy availability is studied. The optimal drive cycle that minimizes energy consumption and procedures for reduction of energy consumption are proposed.PhDIndustrial & Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107075/1/sadrpour_1.pd

    Politiek

    No full text

    A novel method of sensing and classifying terrain for autonomous unmanned ground vehicles

    Get PDF
    Unmanned Ground Vehicles (UGVs) play a vital role in preserving human life during hostile military operations and extend our reach by exploring extraterrestrial worlds during space missions. These systems generally have to operate in unstructured environments which contain dynamic variables and unpredictable obstacles, making the seemingly simple task of traversing from A-B extremely difficult. Terrain is one of the biggest obstacles within these environments as it could potentially cause a vehicle to become stuck and render it useless, therefore autonomous systems must possess the ability to directly sense terrain conditions. Current autonomous vehicles use look-ahead vision systems and passive laser scanners to navigate a safe path around obstacles; however these methods lack detail when considering terrain as they make predictions using estimations of the terrain’s appearance alone. This study establishes a more accurate method of measuring, classifying and monitoring terrain in real-time. A novel instrument for measuring direct terrain features at the wheel-terrain contact interface is presented in the form of the Force Sensing Wheel (FSW). Additionally a classification method using unique parameters of the wheel-terrain interaction is used to identify and monitor terrain conditions in real-time. The combination of both the FSW and real-time classification method facilitates better traversal decisions, creating a more Terrain Capable system

    An Intelligent Architecture for Legged Robot Terrain Classification Using Proprioceptive and Exteroceptive Data

    Get PDF
    In this thesis, we introduce a novel architecture called Intelligent Architecture for Legged Robot Terrain Classification Using Proprioceptive and Exteroceptive Data (iARTEC ) . The proposed architecture integrates different terrain characterization and classification with other robotic system components. Within iARTEC , we consider the problem of having a legged robot autonomously learn to identify different terrains. Robust terrain identification can be used to enhance the capabilities of legged robot systems, both in terms of locomotion and navigation. For example, a robot that has learned to differentiate sand from gravel can autonomously modify (or even select a different) path in favor of traversing over a better terrain. The same knowledge of the terrain type can also be used to guide a robot in order to avoid specific terrains. To tackle this problem, we developed four approaches for terrain characterization, classification, path planning, and control for a mobile legged robot. We developed a particle system inspired approach to estimate the robot footâ ground contact interaction forces. The approach is derived from the well known Bekkerâ s theory to estimate the contact forces based on its point contact model concepts. It is realistically model real-time 3-dimensional contact behaviors between rigid body objects and the soil. For a real-time capable implementation of this approach, its reformulated to use a lookup table generated from simple contact experiments of the robot foot with the terrain. Also, we introduced a short-range terrain classifier using the robot embodied data. The classifier is based on a supervised machine learning approach to optimize the classifier parameters and terrain it using proprioceptive sensor measurements. The learning framework preprocesses sensor data through channel reduction and filtering such that the classifier is trained on the feature vectors that are closely associated with terrain class. For the long-range terrain type prediction using the robot exteroceptive data, we present an online visual terrain classification system. It uses only a monocular camera with a feature-based terrain classification algorithm which is robust to changes in illumination and view points. For this algorithm, we extract local features of terrains using Speed Up Robust Feature (SURF). We encode the features using the Bag of Words (BoW) technique, and then classify the words using Support Vector Machines (SVMs). In addition, we described a terrain dependent navigation and path planning approach that is based on E* planer and employs a proposed metric that specifies the navigation costs associated terrain types. This generated path naturally avoids obstacles and favors terrains with lower values of the metric. At the low level, a proportional input-scaling controller is designed and implemented to autonomously steer the robot to follow the desired path in a stable manner. iARTEC performance was tested and validated experimentally using several different sensing modalities (proprioceptive and exteroceptive) and on the six legged robotic platform CREX. The results show that the proposed architecture integrating the aforementioned approaches with the robotic system allowed the robot to learn both robot-terrain interaction and remote terrain perception models, as well as the relations linking those models. This learning mechanism is performed according to the robot own embodied data. Based on the knowledge available, the approach makes use of the detected remote terrain classes to predict the most probable navigation behavior. With the assigned metric, the performance of the robot on a given terrain is predicted. This allows the navigation of the robot to be influenced by the learned models. Finally, we believe that iARTEC and the methods proposed in this thesis can likely also be implemented on other robot types (such as wheeled robots), although we did not test this option in our work

    A comprehensive survey of unmanned ground vehicle terrain traversability for unstructured environments and sensor technology insights

    Get PDF
    This article provides a detailed analysis of the assessment of unmanned ground vehicle terrain traversability. The analysis is categorized into terrain classification, terrain mapping, and cost-based traversability, with subcategories of appearance-based, geometry-based, and mixed-based methods. The article also explores the use of machine learning (ML), deep learning (DL) and reinforcement learning (RL) and other based end-to-end methods as crucial components for advanced terrain traversability analysis. The investigation indicates that a mixed approach, incorporating both exteroceptive and proprioceptive sensors, is more effective, optimized, and reliable for traversability analysis. Additionally, the article discusses the vehicle platforms and sensor technologies used in traversability analysis, making it a valuable resource for researchers in the field. Overall, this paper contributes significantly to the current understanding of traversability analysis in unstructured environments and provides insights for future sensor-based research on advanced traversability analysis

    Vision based environment perception system for next generation off-road ADAS : innovation report

    Get PDF
    Advanced Driver Assistance Systems (ADAS) aids the driver by providing information or automating the driving related tasks to improve driver comfort, reduce workload and improve safety. The vehicle senses its external environment using sensors, building a representation of the world used by the control systems. In on-road applications, the perception focuses on establishing the location of other road participants such as vehicles and pedestrians and identifying the road trajectory. Perception in the off-road environment is more complex, as the structure found in urban environments is absent. Off-road perception deals with the estimation of surface topography and surface type, which are the factors that will affect vehicle behaviour in unstructured environments. Off-road perception has seldom been explored in automotive context. For autonomous off-road driving, the perception solutions are primarily related to robotics and not directly applicable in the ADAS domain due to the different goals of unmanned autonomous systems, their complexity and the cost of employed sensors. Such applications consider only the impact of the terrain on the vehicle safety and progress but do not account for the driver comfort and assistance. This work addresses the problem of processing vision sensor data to extract the required information about the terrain. The main focus of this work is on the perception task with the constraints of automotive sensors and the requirements of the ADAS systems. By providing a semantic representation of the off-road environment including terrain attributes such as terrain type, description of the terrain topography and surface roughness, the perception system can cater for the requirements of the next generation of off-road ADAS proposed by Land Rover. Firstly, a novel and computationally efficient terrain recognition method was developed. The method facilitates recognition of low friction grass surfaces in real-time with high accuracy, by applying machine learning Support Vector Machine with illumination invariant normalised RGB colour descriptors. The proposed method was analysed and its performance was evaluated experimentally in off-road environments. Terrain recognition performance was evaluated on a variety of different surface types including grass, gravel and tarmac, showing high grass detection performance with accuracy of 97%. Secondly, a terrain geometry identification method was proposed which facilitates semantic representation of the terrain in terms of macro terrain features such as slopes, crest and ditches. The terrain geometry identification method processes 3D information reconstructed from stereo imagery and constructs a compact grid representation of the surface topography. This representation is further processed to extract object representation of slopes, ditches and crests. Thirdly, a novel method for surface roughness identification was proposed. The surface roughness descriptor is then further used to recommend a vehicle velocity, which will maintain passenger comfort. Surface roughness is described by the Power Spectral Density of the surface profile which correlates with the acceleration experienced by the vehicle. The surface roughness descriptor is then mapped onto vehicle speed recommendation so that the speed of the vehicle can be adapted in anticipation of the surface roughness. Terrain geometry and surface roughness identification performance were evaluated on a range of off-road courses with varying topology showing the capability of the system to correctly identify terrain features up to 20 m ahead of the vehicle and analyse surface roughness up to 15 m ahead of the vehicle. The speed was recommended correctly within +/- 5 kph. Further, the impact of the perception system on the speed adaptation was evaluated, showing the improvements in speed adaptation allowing for greater passenger comfort. The developed perception components facilitated the development of new off-road ADAS systems and were successfully applied in prototype vehicles. The proposed off-road ADAS are planned to be introduced in future generations of Land Rover products. The benefits of this research also included new Intellectual Property generated for Jaguar Land Rover. In the wider context, the enhanced off-road perception capability may facilitate further development of off-road automated driving and off-road autonomy within the constraints of the automotive platfor
    corecore