11 research outputs found

    Architecture and evaluation of a unified V2V and V2I communication system based on cellular networks

    Get PDF
    Vehicle communications are becoming the cornerstone in the future vehicle equipment. More specifically, vehicle to vehicle communications (V2V) are the main object of researching nowadays, because vehicle to infrastructure (V2I) approximations are already being developed as commercial solutions. Cellular networks (CN) are usually applied in V2I solutions, whereas ad hoc networks are practically the only technology considered in V2V communications. Due to fact that CN are currently a reality and the operators are continuously improving the network, this communication technology could be considered as a candidate to deal with V2V necessities as well. The present paper defends the applicability of CN in the V2V field, and presents a novel communication paradigm for vehicles which unifies both V2V and V2I paradigms into one system. A peer to peer network technology has been used over the CN basis to create a group-based communication infrastructure which enables the message propagation among vehicles and between the car and the road side infrastructure. The architecture has been implemented in both hardware and software terms, and multitude of field tests have been carried out, whose main performance results are shown in the paper.The authors would like to thank the Spanish Ministerio the Educacion y Ciencia for sponsoring the research activities under the grant AP2005-1437, in frames of the FPU program, and to the financial support given by the European Spatial Agency (ESA) under the GIROADS 332599 project. Special thanks as well to the Spanish Ministerio the Fomento for its continuous support in vehicular researching

    Inter-vehicular communication for collision avoidance using Wi-Fi Direct

    Get PDF
    Inter vehicular collision avoidance systems warn vehicle drivers of potential collisions. The U.S Department of Transportation (USDOT) National Highway Traffic Safety Administration, in February 2014 has decided to enable vehicular communication among lightweight vehicles to exchange warning messages to prevent accidents. Dedicated Short Range Communications (DSRC) is a communication standard that allows short-range communication between vehicles and infrastructure, exchanging critical safety information to avoid collision. DSRC safety applications include forward collision warning, sudden brake warning and blind spot warning among many other warnings. It is also important to exchange location information between vehicles and pedestrians to avoid accidents. To exchange safety messages using DSRC, dedicated equipment is required. Pedestrians may not benefit from DSRC, as they may not carry dedicated DSRC safety equipment with them. Wi-Fi Direct technology can be used as an alternate to DSRC to exchange safety messages. Wi-Fi Direct enabled smartphones can exchange important safety information without the need of additional equipment. Peer-to-Peer (P2P) connections are formed between Wi-Fi Direct devices to exchange safety information. The Group Owner acts as the access point through which all clients communicate. This work examines how Wi-Fi Direct can be used in vehicular environment to exchange basic safety information between smartphones of vehicle drivers. Wi-Fi Direct and DSRC transmission delays are calculated are calculated. The results show, with more devices in a Wi-Fi Direct group the congestion in the network increases due to unnecessary retransmissions through the group owner. As mitigation, a broadcast method is proposed to reduce the delay. The results illustrate that the P2P group can now accommodate more vehicles and the delay is lesser. The calculations are extended to compute the transmission delay when P2P groups of same size exchange safety messages. The results help analyse the limitations of the system

    System Level Impacts of V2X Enabled Vehicle Control Strategies

    Get PDF
    With an increasing number of vehicles on road the quantity of CO2 emissions and the amount of fuel wasted because of traffic congestion have been rising. Use of alternate means of transport that generate fewer emissions does not resolve the problem of congestions and vehicle wait time at traffic signal whereas further expansion of existing network of roads is not only constrained by finite space, but any network can get saturated as the number of vehicles increase. V2X technology allows vehicles and traffic infrastructure to communicate with each other, and could facilitate better use of existing resources by providing vehicles information about their surroundings and traffic signals. The information regarding the phase of traffic signal, vehicles’ position and vehicles’ speed can be used by drivers and autonomous vehicle control algorithms to make informed decisions as they approach traffic signals. This research proposes and analyzes system level impacts of implementing a coordination heuristic over single-vehicle optimization to realize the true potential of V2X technology. The results of this research can help policymakers choose the most suitable control strategy depending on the traffic conditions and the penetration rate of V2X technology. The analysis indicates that at 900 vehicles per hour for either of the two driving strategies: coordination heuristic or single-vehicle optimization, to be more preferred over baseline driver behavior, at least 50% of the vehicles should be V2X capable. Once a threshold penetration rate of V2X vehicles is achieved, vehicles following coordination heuristic generate nearly 10% fewer CO2 emissions than vehicles following baseline driver behavior, a 30% improvement over the reduction in CO2 emissions obtained using single-vehicle optimization. The vehicles following the coordination heuristic also have less travel time than vehicles following single-vehicle optimization, and less wait times than vehicles following baseline driver behavior

    The Role of communication and network technologies in vehicular applications

    Get PDF
    International audienceVehicular networks attract a lot of attention in the research world. Novel vehicular applications need a suitable communication channel in order to extend in-vehicle capabilities and, be aware about surrounding events. However, these networks present some proprieties, such as high mobility or specific topologies. These properties affect the performances of applications and more effort should be directed to identify the final necessities of the network. Few works deal with application requirements which should be considered when vehicular services are designed. In this chapter this gap is filled, proposing an analysis of application requirements which considers available technologies for physical/MAC and network layers. This study contains key factors which must be taken into account not only at the designing stage of the vehicular network, but also when applications are evaluated

    A Framework for Quality of Service in Vehicle-to-Pedestrian Safety Communication

    Get PDF
    Vehicle-to-Everything (V2X) communication has emerged as an important mechanism to improve the safety and efficiency of road traffic. V2X communication encompasses Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-to-Pedestrian (V2P) communication. Among these types, the V2P communication efforts continue to be in the preliminary stage and lack a rounded approach towards the development of V2P systems. V2P involves communication between vehicles and a wide variety of Vulnerable Road Users (VRUs), such as pedestrians, bicyclists, mopeds, etc. The V2X systems were originally developed only for V2V and V2I when solely the vehicle characteristics were in focus. However, effective V2P system design needs to consider the characteristics of VRUs. The differing characteristics of VRUs have given rise to many questions while adapting to the V2V communication model for the V2P system. This dissertation addresses three aspects pertaining to the development of the V2P safety system. The first aspect involves a systematic design of a V2P system using a holistic approach. This dissertation proposes a V2P design framework based on various categories of inputs that are required for the design of an effective V2P system. This framework improves the understanding of the V2P system requirements and helps make the design process more systematic. The second aspect is the network performance of the V2X network in the presence of a large number of VRUs. This dissertation proposes MC-COCO4V2P, which is an energy-efficient pedestrian clustering mechanism for network congestion mitigation. MC-COCO4V2P improves network performance by reducing the pedestrian-generated safety messages. It also improves the battery life of the pedestrian devices in the process. The third aspect involves the reliability of communication between a pair of a vehicle and a pedestrian that are on the verge of collision. This dissertation classifies such crucial communication as the one requiring the highest priority even among the exchange of critical safety messages. It proposes a mechanism enabling the surrounding nodes to reduce the communication priority temporarily. This results in preferred medium access for the pair resulting in higher Quality-of-Service (QoS) for the crucial communication.Die Kommunikation zwischen Verkehrsteilnehmern (V2X) hat sich zu einem wichtigen Mechanismus zur Verbesserung der Sicherheit und Effizienz des Straßenverkehrs entwickelt. Obwohl die V2X-Kommunikation prinzipiell die Kommunikation zwischen Fahrzeugen (V2V), zwischen Fahrzeug und Infrastruktur (V2I) sowie zwischen Fahrzeug und FußgĂ€nger (V2P) umfasst, sind AnsĂ€tze zur V2P-Kommunikation weiterhin in einem sehr frĂŒhen Stadium und lassen einen umfassenden Ansatz fĂŒr die Entwicklung von V2P-Systemen vermissen. V2P umfasst im Detail die Kommunikation zwischen Fahrzeugen und einer Vielzahl von gefĂ€hrdeten Verkehrsteilnehmern (VRUs), wie beispielsweise FußgĂ€nger, Radfahrer oder Mopeds. V2X-Systeme wurden ursprĂŒnglich nur fĂŒr V2V- und V2I-Kommunikation entwickelt, wobei ausschließlich die Fahrzeugeigenschaften im Fokus standen. Ein effektives V2P-Systemdesign muss jedoch auch die Eigenschaften von VRUs berĂŒcksichtigen, die bei der BerĂŒcksichtigung der V2P-Kommunikation in einem V2X-System viele Fragen aufwerfen. Diese Dissertation befasst sich mit drei Aspekten im Zusammenhang mit der Entwicklung eines V2P-Systems. Der erste Aspekt betrifft die systematische Konzeption eines V2P-Systems nach einem ganzheitlichen Ansatz. Diese Dissertation schlĂ€gt einen V2P-Entwurfsrahmen vor, der auf verschiedenen EingangsgrĂ¶ĂŸen basiert, die fĂŒr die Entwicklung eines effektiven V2P-Systems erforderlich sind. Dieser Entwurfsrahmen verbessert das VerstĂ€ndnis der V2P-Systemanforderungen und trĂ€gt dazu bei, den Entwurfsprozess systematischer zu gestalten. Der zweite Aspekt betrifft die Leistung des V2X-Netzes, wenn eine große Anzahl von VRUs prĂ€sent ist. Diese Dissertation schlĂ€gt hierfĂŒr MC-COCO4V2P vor, einen energieeffizienten Clustering-Mechanismus fĂŒr FußgĂ€nger zur EindĂ€mmung der NetzĂŒberlastung. MC-COCO4V2P verbessert die Netzleistung, indem die Anzahl der von FußgĂ€ngern generierten Sicherheitsmeldungen reduziert wird. Damit wird zudem die Batterielebensdauer der von den FußgĂ€ngern genutzten GerĂ€te verbessert. Der dritte Aspekt betrifft die ZuverlĂ€ssigkeit der Kommunikation zwischen einem Fahrzeug und einem FußgĂ€nger, die kurz vor einem Zusammenstoß stehen. Diese Dissertation stuft eine so wichtige Kommunikation als diejenige ein, die selbst beim Austausch anderer kritischer Sicherheitsnachrichten die höchste PrioritĂ€t bekommt. Es wird ein Mechanismus vorgeschlagen, der es den umgebenden Verkehrsteilnehmern ermöglicht, ihre KommunikationsprioritĂ€t vorĂŒbergehend zu verringern. Dies fĂŒhrt zu einem bevorzugten Medienzugriff fĂŒr die durch eine Kollision gefĂ€hrdeten Verkehrsteilnehmer, was zu einer höheren DienstgĂŒte (QoS) fĂŒr deren Kommunikation fĂŒhrt.Pedestrians and bicyclists, also known as Vulnerable Road Users (VRUs), are one of the weakest components of Intelligent Transportation Systems from a safety perspective. However, with the advent of new communication technologies, VRU protection may no longer be dependent solely on the vehicle’s safety systems. VRUs may share their location information with the surrounding vehicles to increase awareness of their presence. Such communication among vehicles and VRUs is referred to as Vehicle-to-Pedestrian (V2P) communication. Although the V2P system may be built upon the existing Vehicle-to-Vehicle communication system, it has its own set of challenges, such as different VRU mobility characteristics, energy-constrained devices, and VRU density. Therefore, there needs to be a V2P system model which is adapted to the VRU characteristics. This dissertation tackles this challenge by proposing a framework that enables scalability, reliability, and energy efficiency for VRU communication

    A simulation framework for traffic information dissemination in ubiquitous vehicular ad hoc networks

    Get PDF
    The ongoing efforts to apply advanced technologies to help solve transportation problems advanced the growing trend of integrating mobile wireless communications into transportation systems. In particular, vehicular ad hoc networks (VANETs) allow vehicles to constitute a decentralized traffic information system on roadways and to share their own information. This research focused on the development of an integrated transportation and communication simulation framework to build a more realistic environment with which to study VANETs, as compared to previous studies. This research implemented a VANET-based information model into an integrated transportation and communication simulation framework in which these independent simulation tools were tightly coupled and finely synchronized. A traffic information system as a VANET application was built and demonstrated based on the simulation framework developed in this research. In this system, vehicles record their own travel time data, share these data via an ad hoc network, and reroute at split sections based on stored travel time data. Disseminated speeds of traffic information via broadcast on a real roadway network were obtained. In this research, Traffic information speeds were approximately between the road speed limit in a low traffic density - in which case they were mostly delivered by vehicles traveling on the opposite directions - and half of the transmission range (250/2 meter) per second in a high traffic density, which means they were delivered by vehicles traveling in the same direction. Successful dynamic routing based on stored travel time data was demonstrated with and without an incident in this framework. At the both cases, the benefits from dynamic routing were shown even in the low market penetration. It is believed that a wide range of VANET applications can be designed and assessed using methodologies influenced by and contributed to by the simulation framework and other methods developed in this dissertation

    Aeronautical Engineering: A continuing bibliography with indexes, supplement 104

    Get PDF
    This bibliography lists 532 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in December 1978

    An integrated solution based irregular driving detection

    No full text
    Global Navigation Satellite Systems (GNSS) are used widely in the provision of Intelligent Transport System (ITS) services. Today, metre-level positioning accuracy, which is required for many applications including route guidance, fleet management and traffic control can be fulfilled by GNSS-based systems. Because of this level of success and potential, there is an increasing demand for GNSS to support applications with more stringent positioning requirements. These include safety related applications that require centimetre/decimetre level positioning accuracy, with high integrity, continuity and availability such as lane control, collision avoidance and intelligent speed assistance. Detecting lane level irregular driving behaviour is the basic requirement for lane level ITS applications.Currently, some research has addressed road level irregular driving detection, however very little research has been done in lane level irregular driving detection. The two major issues involved in the lane level irregular driving identification are access to high accuracy positioning and vehicle dynamic parameters, and extraction of erratic driving behaviour from this and the lane related information.This thesis proposes an integrated solution for the detection of lane level irregular driving behaviour. Access to high accuracy positioning is enabled by GPS and its integration with an Inertial Navigation System (INS) using Extended Kalman Filtering (EKF) and Particle Filtering (PF) with precise vehicle motion models and lane centre line information. Four motion models are used in this thesis: Constant Velocity (CV), Constant Acceleration (CA), Constant Turn Rate and Velocity (CTRV) and Constant Turn Rate and Acceleration (CTRA). The CV and CA models are used on straight lanes and the CTRV and CTRA models on curved lanes. Lane centre line information is extracted from defined lane coordinates in the simulation and is surveyed and stored as sets of positioning points from the motorway in the field test. The high accuracy vehicle positioning and dynamic parameters include yaw rate (omega) and lateral displacement (d) in addition to conventional navigation parameters such as position, velocity and acceleration. The detection of irregular driving behaviour is achieved by comparing the sorting rules of a driving classification indicator from the filter estimations with what is extracted from the reference. The detected irregular driving styles are characterized by weaving, swerving, jerky driving and normal driving on straight and curved lanes, based on the Fuzzy Inference System (FIS). The solution proposed in the thesis has been tested by simulation and validated by real field data. The simulation results show that different types of lane level irregular driving behaviour can be correctly identified by the algorithms developed in this thesis. This is confirmed by the application of data from a field test during which the dynamics of an instrumented vehicle supplied by Imperial College London were captured in real time. The results show that the precise positioning algorithms developed can improve the accuracy of GPS positioning and that the FIS based irregular driving detection algorithms can detect the different types of irregular driving. The evaluation of the designed integrated systems in the field test shows that a positioning accuracy of 0.5m (95%) source is required for lane level irregular driving detection, with a correct detection rate of 95% and availability of 94% based on a 1s output rate. This is useful for many safety related applications including lane departure warnings and collision avoidance.Open Acces

    Fifth Annual Workshop on Space Operations Applications and Research (SOAR 1991), volume 2

    Get PDF
    Papers given at the Space Operations and Applications Symposium, host by the NASA Johnson Space Center on July 9-11, 1991 are given. The technical areas covered included intelligent systems, automation and robotics, human factors and life sciences, and environmental interactions
    corecore