10 research outputs found

    Cognitive Vehicle Platooning in the Era of Automated Electric Transportation

    Get PDF
    Vehicle platooning is an important innovation in the automotive industry that aims at improving safety, mileage, efficiency, and the time needed to travel. This research focuses on the various aspects of vehicle platooning, one of the important aspects being analysis of different control strategies that lead to a stable and robust platoon. Safety of passengers being a very important consideration, the control design should be such that the controller remains robust under uncertain environments. As a part of the Department of Energy (DOE) project, this research also tries to show a demonstration of vehicle platooning using robots. In an automated highway scenario, a vehicle platoon can be thought of as a string of vehicles, following one another as a platoon. Being equipped by wireless communication capabilities, these vehicles communicate with one another to maintain their formation as a platoon, hence are cognitive. Autonomous capable vehicles in tightly spaced, computer-controlled platoons will lead to savings in energy due to reduced aerodynamic forces, as well as increased passenger comfort since there will be no sudden accelerations or decelerations. Impacts in the occurrence of collisions, if any, will be very low. The greatest benefit obtained is, however, an increase in highway capacity, along with reduction in traffic congestion, pollution, and energy consumption. Another aspect of this project is the automated electric transportation (AET). This aims at providing energy directly to vehicles from electric highways, thus reducing their energy consumption and CO2 emission. By eliminating the use of overhead wires, infrastructure can be upgraded by electrifying highways and providing energy on demand and in real time to moving vehicles via a wireless energy transfer phenomenon known as wireless inductive coupling. The work done in this research will help to gain an insight into vehicle platooning and the control system related to maintaining the vehicles in this formation

    Autonomous vehicle convoy using Lego Mindstorms

    Get PDF
    ABSTRACT -Autonomous vehicle convoy is a future driving and technology system that have been researched and developed for decades to solve problems in our transportation system nowadays. The increasing of road traffic has contributed to traffic congestion and more severely causes accidents. The aims of this study are to develop convoy algorithm and demonstrate autonomous vehicle convoy system using the LEGO Mindstorms Education EV3 by performing convoy experiment using small scaled car. The convoy or platooning need to satisfy the range of constraints by keeping the control parameters. It consists of one leader and two followers which have to maintain speed and safe distance while moving at designated route

    Analysis and modeling of sensors and actuators of LEGO Mindstorm

    Get PDF
    Tato práce se zabývá podrobnou analýzou a modelováním vybraných sensorů a aktuátorů programovatelné robotické stavebnice LEGO Mindstorms NXT 2.0. Aktuátory jsou zastoupeny servomotory a mezi vybrané sensory patří barevný a ultrazvukový sensor, oba dostupné v základní verzi stavebnice, a také sensor gyroskopický od firmy HiTechnic. Obsahem práce je realizace a vyhodnocení experimentů pro jednotlivé prvky a výsledkem jsou grafická znázornění vlastností sensorů, modely v prostředí Simulink reprezentující dané prvky a přehledy parametrů a vlastností jednotlivých sensorů a aktuátorů. Detailní analýza sensorů a servomotorů stavebnice poskytuje přehled o možnostech, ale i omezeních jednotlivých prvků. Tyto znalosti mohou být poté využity pro široké spektrum možných aplikací stavebnice.The focus of this thesis is a detailed analysis and modeling of selected sensors and actuators of programmable robotic kit LEGO Mindstorms NXT 2.0. Actuators are represented by servomotors and the selected sensors include a color and an ultrasonic sensor, both available in the basic version of the kit, and a gyro sensor made by HiTechnic. The thesis describes the realization and evaluation of experiments performed for each element resulting in graphical representations of the sensors’ properties, models in Simulink environment representing the respective elements, and datasheets – overviews of parameters and characteristics of the individual sensors and actuators. The detailed analysis of the sensors and servomotors of the kit provides an overview of the possibilities, but also the limitations of the particular elements. This knowledge can be subsequently used for a wide range of possible applications of the kit.

    Optical tracking control of a differentially-driven wheeled robot

    Get PDF
    Mobile robotics has become an increasingly ubiquitous technology in modern times. A typical example is the wheeled mobile robot (WMR). In order for a WMR to function effectively, it must demonstrate excellent tracking control and localisation capabilities. This is achieved by having accurate and responsive control algorithms as well as high-precision sensor systems. However, this often requires complicated algorithms and expensive equipment. This thesis proposes a system to show that good tracking performance can be achieved with moderately simple control algorithm and relatively inexpensive hardware. The platform used in this research was a differentially-driven wheeled robot constructed using the Lego MindstormsNXT system. Positional tracking was provided by two Avago optical laser sensors commonly found on the computer mouse. The main programming environments were MATLAB and Simulink, along with several other open-source applications. In the first part of the thesis, a PID-based system is presented along with the two control schemes. The first is a purely kinematic model and the second includes dynamic constraints. For both versions, a cascaded PID design was employed and settings were manually tuned. The final mathematical models were computationally simulated and their respective results were analysed and compared. Hardware validation was not conducted for this phase of the research as the simulation results suggested that the PID-based system may not produce the desired level of tracking performance. The second part of the thesis explores a model reference adaptive control system. Lyapunov's direct method was used to achieve stability and convergence in the system. In contrast to the PID-based model, a vastly more accurate geometric localisation technique was applied. The research identified a number of shortcomings in current geometric localisation methods and suggested ways to mitigate them. In addition, a novel approach for detecting faulty sensor readings was introduced in conjunction with the development of a semi-redundant system. The eventual theoretical model was tested using computer simulation, and the outcome was contrasted with the results of the PID-based system. This was followed by the construction of a prototype in order to verify the validity of the proposed model. Various configurations of the adaptive model were tested and compared: the two localisation methods, use of single and dual sensors, and application of semi-redundancy. The thesis concludes with the analysis of results of the prototype testing. The theoretical propositions in the thesis were shown to be amply validated. Suggestions for future research work are also presented

    DEVELOPING ALGORITHM FOR OBJECT TRACKING USING PASSIVE SENSORS

    Get PDF
    Platooning system is a type of cooperative driving system where several vehicles are aligned to form a chain of vehicles just like a train form. In this project, an unguided system of platooning is designed, where a manually controlled leader vehicle is guiding the following vehicle that is moving autonomously. Object tracking is one of the features in platooning. In order to perform object tracking, advanced sensors are usually used in platooning for example laser range finder, camera and GPS. Advanced sensors are usually used because they can handle complex situations for example on the road or highway. However, if the sensors are used for a smaller and simple layout such as in a building, they appear to be high in expenditure. Hence, this paper serves to describe the use of simple and low-cost passive sensors to replace the advanced sensors in developing an object-tracking system which is more appropriate for educational purpose. Integrating simple sensors in object-tracking may not produce excellent results as compared to advanced sensors but with an appropriate algorithm, it is hoped that at least simple leader/follower behaviour could be demonstrated

    Control de un convoy robótico mediante planificación de rutas y estrategias de orientación

    Get PDF
    This paper presents an overview about control methods implemented on robotic convoy systems or cooperative systems on mobile platforms which can be used for path planning, orientation, environment perception, route tracking and control systems in which involve the measurement, analysis, and interpretation of different variables for further implementation. A review was made of investigation articles on bibliographic indexes and databases about control methods used in convoy systems to evidence progress, trends and application methods.Este artículo presenta un estado del arte relacionado con métodos de control implementados en sistemas de convoy robóticos en plataformas móviles que pueden ser utilizados para la planificación de rutas o trayectorias, orientación, percepción de entornos y sistemas de control en el que se involucra la medición, análisis e interpretación de diversas variables y su posterior implementación. Se realizó una revisión de artículos de investigación en índices bibliográficos y bases de datos sobre métodos de control aplicados en sistemas de convoy para de esta forma evidenciar avances, tendencias y métodos de aplicación.

    Proceeding Of Mechanical Engineering Research Day 2015 (MERD’15)

    Get PDF
    This Open Access e-Proceeding contains 74 selected papers from the Mechanical Engineering Research Day 2015 (MERD’15) event, which is held in Kampus Teknologi, Universiti Teknikal Malaysia Melaka (UTeM) - Melaka, Malaysia, on 31 March 2015. The theme chosen for this event is ‘Pioneering Future Discovery’. The response for MERD’15 is overwhelming as the technical committees have received more than 90 papers from various areas of mechanical engineering. From the total number of submissions, the technical committees have selected 74 papers to be included in this proceeding. The selected papers are grouped into 12 categories: Advanced Materials Processing; Automotive Engineering; Computational Modeling and Analysis & CAD/CAE; Energy Management & Fuels and Lubricants; Hydraulics and Pneumatics & Mechanical Control; Mechanical Design and Optimization; Noise, Vibration and Harshness; Non-Destructive Testing & Structural Mechanics; Surface Engineering and Coatings; Others Related Topic. With the large number of submissions from the researchers in other faculties, the event has achieved its main objective which is to bring together educators, researchers and practitioners to share their findings and perhaps sustaining the research culture in the university. The topics of MERD’15 are based on a combination of advanced research methodologies, application technologies and review approaches. As the editor-in-chief, we would like to express our gratitude to the editorial board members for their tireless effort in compiling and reviewing the selected papers for this proceeding. We would also like to extend our great appreciation to the members of the Publication Committee and Secretariat for their excellent cooperation in preparing the proceedings of MERD’15

    Manipulador aéreo con brazos antropomórficos de articulaciones flexibles

    Get PDF
    [Resumen] Este artículo presenta el primer robot manipulador aéreo con dos brazos antropomórficos diseñado para aplicarse en tareas de inspección y mantenimiento en entornos industriales de difícil acceso para operarios humanos. El robot consiste en una plataforma aérea multirrotor equipada con dos brazos antropomórficos ultraligeros, así como el sistema de control integrado de la plataforma y los brazos. Una de las principales características del manipulador es la flexibilidad mecánica proporcionada en todas las articulaciones, lo que aumenta la seguridad en las interacciones físicas con el entorno y la protección del propio robot. Para ello se ha introducido un compacto y simple mecanismo de transmisión por muelle entre el eje del servo y el enlace de salida. La estructura en aluminio de los brazos ha sido cuidadosamente diseñada de forma que los actuadores estén aislados frente a cargas radiales y axiales que los puedan dañar. El manipulador desarrollado ha sido validado a través de experimentos en base fija y en pruebas de vuelo en exteriores.Ministerio de Economía y Competitividad; DPI2014-5983-C2-1-
    corecore