527 research outputs found

    Air-Ground Integrated Mobile Edge Networks: Architecture, Challenges and Opportunities

    Full text link
    The ever-increasing mobile data demands have posed significant challenges in the current radio access networks, while the emerging computation-heavy Internet of things (IoT) applications with varied requirements demand more flexibility and resilience from the cloud/edge computing architecture. In this article, to address the issues, we propose a novel air-ground integrated mobile edge network (AGMEN), where UAVs are flexibly deployed and scheduled, and assist the communication, caching, and computing of the edge network. In specific, we present the detailed architecture of AGMEN, and investigate the benefits and application scenarios of drone-cells, and UAV-assisted edge caching and computing. Furthermore, the challenging issues in AGMEN are discussed, and potential research directions are highlighted.Comment: Accepted by IEEE Communications Magazine. 5 figure

    A Computation Offloading Incentive Mechanism with Delay and Cost Constraints under 5G Satellite-ground IoV architecture

    Full text link
    The 5G Internet of Vehicles has become a new paradigm alongside the growing popularity and variety of computation-intensive applications with high requirements for computational resources and analysis capabilities. Existing network architectures and resource management mechanisms may not sufficiently guarantee satisfactory Quality of Experience and network efficiency, mainly suffering from coverage limitation of Road Side Units, insufficient resources, and unsatisfactory computational capabilities of onboard equipment, frequently changing network topology, and ineffective resource management schemes. To meet the demands of such applications, in this article, we first propose a novel architecture by integrating the satellite network with 5G cloud-enabled Internet of Vehicles to efficiently support seamless coverage and global resource management. A incentive mechanism based joint optimization problem of opportunistic computation offloading under delay and cost constraints is established under the aforementioned framework, in which a vehicular user can either significantly reduce the application completion time by offloading workloads to several nearby vehicles through opportunistic vehicle-to-vehicle channels while effectively controlling the cost or protect its own profit by providing compensated computing service. As the optimization problem is non-convex and NP-hard, simulated annealing based on the Markov Chain Monte Carlo as well as the metropolis algorithm is applied to solve the optimization problem, which can efficaciously obtain both high-quality and cost-effective approximations of global optimal solutions. The effectiveness of the proposed mechanism is corroborated through simulation results

    Intelligent Task Offloading for Heterogeneous V2X Communications

    Full text link
    With the rapid development of autonomous driving technologies, it becomes difficult to reconcile the conflict between ever-increasing demands for high process rate in the intelligent automotive tasks and resource-constrained on-board processors. Fortunately, vehicular edge computing (VEC) has been proposed to meet the pressing resource demands. Due to the delay-sensitive traits of automotive tasks, only a heterogeneous vehicular network with multiple access technologies may be able to handle these demanding challenges. In this paper, we propose an intelligent task offloading framework in heterogeneous vehicular networks with three Vehicle-to-Everything (V2X) communication technologies, namely Dedicated Short Range Communication (DSRC), cellular-based V2X (C-V2X) communication, and millimeter wave (mmWave) communication. Based on stochastic network calculus, this paper firstly derives the delay upper bound of different offloading technologies with a certain failure probability. Moreover, we propose a federated Q-learning method that optimally utilizes the available resources to minimize the communication/computing budgets and the offloading failure probabilities. Simulation results indicate that our proposed algorithm can significantly outperform the existing algorithms in terms of offloading failure probability and resource cost.Comment: 12 pages, 7 figure

    Towards Massive Machine Type Cellular Communications

    Full text link
    Cellular networks have been engineered and optimized to carrying ever-increasing amounts of mobile data, but over the last few years, a new class of applications based on machine-centric communications has begun to emerge. Automated devices such as sensors, tracking devices, and meters - often referred to as machine-to-machine (M2M) or machine-type communications (MTC) - introduce an attractive revenue stream for mobile network operators, if a massive number of them can be efficiently supported. The novel technical challenges posed by MTC applications include increased overhead and control signaling as well as diverse application-specific constraints such as ultra-low complexity, extreme energy efficiency, critical timing, and continuous data intensive uploading. This paper explains the new requirements and challenges that large-scale MTC applications introduce, and provides a survey on key techniques for overcoming them. We focus on the potential of 4.5G and 5G networks to serve both the high data rate needs of conventional human-type communications (HTC) subscribers and the forecasted billions of new MTC devices. We also opine on attractive economic models that will enable this new class of cellular subscribers to grow to its full potential.Comment: accepted and to appear in the IEEE Wireless Communications Magazin

    Mobility as an Alternative Communication Channel: A Survey

    Full text link
    We review the research literature investigating systems in which mobile entities can carry data while they move. These entities can be either mobile by nature (e.g., human beings and animals) or mobile by design (e.g., trains, airplanes, and cars). The movements of such entities equipped with storage capabilities create a communication channel which can help overcome the limitations or the lack of conventional data networks. Common limitations include the mismatch between the capacity offered by these networks and the traffic demand or their limited deployment owing to environmental factors. Application scenarios include offloading traffic off legacy networks for capacity improvement, bridging connectivity gaps, or deploying ad hoc networks in challenging environments for coverage enhancement

    EdgeFlow: Open-Source Multi-layer Data Flow Processing in Edge Computing for 5G and Beyond

    Full text link
    Edge computing has evolved to be a promising avenue to enhance the system computing capability by offloading processing tasks from the cloud to edge devices. In this paper, we propose a multi-layer edge computing framework called EdgeFlow. In this framework, different nodes ranging from edge devices to cloud data centers are categorized into corresponding layers and cooperate together for data processing. With the help of EdgeFlow, one can balance the trade-off between computing and communication capability so that the tasks are assigned to each layer optimally. At the same time, resources are carefully allocated throughout the whole network to mitigate performance fluctuation. The proposed open-source data flow processing framework is implemented on a platform that can emulate various computing nodes in multiple layers and corresponding network connections. Evaluated on the face recognition scenario, EdgeFlow can significantly reduce task finish time and perform more tolerance to run-time variation, compared with the pure cloud computing, the pure edge computing and Cloudlet. Potential applications of EdgeFlow, including network function visualization, Internet of Things, and vehicular networks, are also discussed in the end of this work.Comment: 17 pages, 6 figures, magazin

    Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities

    Full text link
    Smart cities demand resources for rich immersive sensing, ubiquitous communications, powerful computing, large storage, and high intelligence (SCCSI) to support various kinds of applications, such as public safety, connected and autonomous driving, smart and connected health, and smart living. At the same time, it is widely recognized that vehicles such as autonomous cars, equipped with significantly powerful SCCSI capabilities, will become ubiquitous in future smart cities. By observing the convergence of these two trends, this article advocates the use of vehicles to build a cost-effective service network, called the Vehicle as a Service (VaaS) paradigm, where vehicles empowered with SCCSI capability form a web of mobile servers and communicators to provide SCCSI services in smart cities. Towards this direction, we first examine the potential use cases in smart cities and possible upgrades required for the transition from traditional vehicular ad hoc networks (VANETs) to VaaS. Then, we will introduce the system architecture of the VaaS paradigm and discuss how it can provide SCCSI services in future smart cities, respectively. At last, we identify the open problems of this paradigm and future research directions, including architectural design, service provisioning, incentive design, and security & privacy. We expect that this paper paves the way towards developing a cost-effective and sustainable approach for building smart cities.Comment: 32 pages, 11 figure

    Boosting Vehicle-to-cloud Communication by Machine Learning-enabled Context Prediction

    Full text link
    The exploitation of vehicles as mobile sensors acts as a catalyst for novel crowdsensing-based applications such as intelligent traffic control and distributed weather forecast. However, the massive increases in Machine-type Communication (MTC) highly stress the capacities of the network infrastructure. With the system-immanent limitation of resources in cellular networks and the resource competition between human cell users and MTC, more resource-efficient channel access methods are required in order to improve the coexistence of the different communicating entities. In this paper, we present a machine learning-enabled transmission scheme for client-side opportunistic data transmission. By considering the measured channel state as well as the predicted future channel behavior, delay-tolerant MTC is performed with respect to the anticipated resource-efficiency. The proposed mechanism is evaluated in comprehensive field evaluations in public Long Term Evolution (LTE) networks, where it is able to increase the mean data rate by 194% while simultaneously reducing the average power consumption by up to 54%

    Energy-efficient Traffic Bypassing in LTE HetNets with Mobile Relays

    Full text link
    One of the core technologies being standardized by 3GPP for LTE-A is the introduction of Relay Nodes (RNs). RNs are intended for ensuring coverage at cell edges as well as for the provision of enhanced capacity at hot spot areas. An extension to this concept is the Mobile Relay (MR). MRs can be mounted on vehicles and the original idea is to serve users inside high speed trains thus counter fighting the inherent severe fading and vehicle penetration loss. In this work we present a framework for exploiting Mobile Relay (MRs) even at low speeds in urban environments for bypassing traffic from nearby users, either within or outside the vehicles. In particular we show that apart from increased capacity and good quality coverage this approach achieves important energy savings for the mobile terminals.Comment: 6 pages, 6 figure

    Vehicle as a Resource (VaaR)

    Full text link
    Intelligent vehicles are considered key enablers for intelligent transportation systems. They are equipped with resources/components to enable services for vehicle occupants, other vehicles on the road, and third party recipients. In-vehicle sensors, communication modules, and on-board units with computing and storage capabilities allow the intelligent vehicle to work as a mobile service provider of sensing, data storage, computing, cloud, data relaying, infotainment, and localization services. In this paper, we introduce the concept of Vehicle as a Resource (VaaR) and shed light on the services a vehicle can potentially provide on the road or parked. We anticipate that an intelligent vehicle can be a significant service provider in a variety of situations, including emergency scenarios
    corecore