2,164 research outputs found

    Smart Traction Control Systems for Electric Vehicles Using Acoustic Road-type Estimation

    Full text link
    The application of traction control systems (TCS) for electric vehicles (EV) has great potential due to easy implementation of torque control with direct-drive motors. However, the control system usually requires road-tire friction and slip-ratio values, which must be estimated. While it is not possible to obtain the first one directly, the estimation of latter value requires accurate measurements of chassis and wheel velocity. In addition, existing TCS structures are often designed without considering the robustness and energy efficiency of torque control. In this work, both problems are addressed with a smart TCS design having an integrated acoustic road-type estimation (ARTE) unit. This unit enables the road-type recognition and this information is used to retrieve the correct look-up table between friction coefficient and slip-ratio. The estimation of the friction coefficient helps the system to update the necessary input torque. The ARTE unit utilizes machine learning, mapping the acoustic feature inputs to road-type as output. In this study, three existing TCS for EVs are examined with and without the integrated ARTE unit. The results show significant performance improvement with ARTE, reducing the slip ratio by 75% while saving energy via reduction of applied torque and increasing the robustness of the TCS.Comment: Accepted to be published by IEEE Trans. on Intelligent Vehicles, 22 Jan 201

    On line estimation of rolling resistance for intelligent tires

    Get PDF
    The analysis of a rolling tire is a complex problem of nonlinear elasticity. Although in the technical literature some tire models have been presented, the phenomena involved in the tire rolling are far to be completely understood. In particular, small knowledge comes even from experimental direct observation of the rolling tire, in terms of dynamic contact patch, instantaneous dissipation due to rubber-road friction and hysteretic behavior of the tire structure, and instantaneous grip. This paper illustrates in details a new powerful technology that the research group has developed in the context of the project OPTYRE. A new wireless optical system based on Fiber Bragg Grating strain sensors permits a direct observation of the inner tire stress when rolling in real conditions on the road. From this information, following a new suitably developed tire model, it is possible to identify the instant area of the contact patch, the grip conditions as well the instant dissipation, which is the object of the present work

    Some remarks on wheeled autonomous vehicles and the evolution of their control design

    Full text link
    Recent investigations on the longitudinal and lateral control of wheeled autonomous vehicles are reported. Flatness-based techniques are first introduced via a simplified model. It depends on some physical parameters, like cornering stiffness coefficients of the tires, friction coefficient of the road, ..., which are notoriously difficult to identify. Then a model-free control strategy, which exploits the flat outputs, is proposed. Those outputs also depend on physical parameters which are poorly known, i.e., the vehicle mass and inertia and the position of the center of gravity. A totally model-free control law is therefore adopted. It employs natural output variables, namely the longitudinal velocity and the lateral deviation of the vehicle. This last method, which is easily understandable and implementable, ensures a robust trajectory tracking problem in both longitudinal and lateral dynamics. Several convincing computer simulations are displayed.Comment: 9th IFAC Symposium on Intelligent Autonomous Vehicles (Leipzig, Germany, 29.06.2016 - 01.07.2016

    A state-of-the-art review on torque distribution strategies aimed at enhancing energy efficiency for fully electric vehicles with independently actuated drivetrains

    Get PDF
    © 2019, Levrotto and Bella. All rights reserved. Electric vehicles are the future of private passenger transportation. However, there are still several technological barriers that hinder the large scale adoption of electric vehicles. In particular, their limited autonomy motivates studies on methods for improving the energy efficiency of electric vehicles so as to make them more attractive to the market. This paper provides a concise review on the current state-of-the-art of torque distribution strategies aimed at enhancing energy efficiency for fully electric vehicles with independently actuated drivetrains (FEVIADs). Starting from the operating principles, which include the "control allocation" problem, the peculiarities of each proposed solution are illustrated. All the existing techniques are categorized based on a selection of parameters deemed relevant to provide a comprehensive overview and understanding of the topic. Finally, future concerns and research perspectives for FEVIAD are discussed

    Vehicle Dynamics, Lateral Forces, Roll Angle, Tire Wear and Road Profile States Estimation - A Review

    Get PDF
    Estimation of vehicle dynamics, tire wear, and road profile are indispensable prefaces in the development of automobile manufacturing due to the growing demands for vehicle safety, stability, and intelligent control, economic and environmental protection. Thus, vehicle state estimation approaches have captured the great interest of researchers because of the intricacy of vehicle dynamics and stability control systems. Over the last few decades, great enhancement has been accomplished in the theory and experiments for the development of these estimation states. This article provides a comprehensive review of recent advances in vehicle dynamics, tire wear, and road profile estimations. Most relevant and significant models have been reviewed in relation to the vehicle dynamics, roll angle, tire wear, and road profile states. Finally, some suggestions have been pointed out for enhancing the performance of the vehicle dynamics models

    Implementation in Embedded Systems of State Observers Based on Multibody Dynamics

    Get PDF
    Programa Oficial de Doutoramento en Enxeñaría Naval e Industrial . 5015V01[Abstract] Simulation has become an important tool in the industry that minimizes either the cost and time of new products development and testing. In the automotive industry, the use of simulation is being extended to virtual sensing. Through an accurate model of the vehicle combined with a state estimator, variables that are difficult or costly to measure can be estimated. The virtual sensing approach is limited by the low computational power of invehicle hardware due to the strictest timing, reliability and safety requirements imposed by automotive standards. With the new generation hardware, the computational power of embedded platforms has increased. They are based on heterogeneous processors, where the main processor is combined with a co-processor, such as Field Programmable Gate Arrays (FPGAs). This thesis explores the implementation of a state estimator based on a multibody model of a vehicle in new generation embedded hardware. Different implementation strategies are tested in order to explore the advantages that an FPGA can provide. A new state-parameter-input observer is developed, providing accurate estimations. The proposed observer is combined with an efficient multibody model of a vehicle, achieving real-time execution.[Resumen] La simulación se ha convertido en una importante herramienta para la industria que permite minimizar tanto costes como tiempo de desarrollo y test de nuevos productos. En automoción, el uso de la simulación se extiende al desarrollo de sensores virtuales. Mediante un modelo preciso de un vehículo combinado con un observador de estados, variables que son caras o imposibles de medir pueden ser estimadas. La principal limitación para utilizar sensores virtuales en los vehículos es la baja potencia computacional de los procesadores instalados a bordo, debido a los estrictos requisitos impuestos por los standards de automoción. Con el hardware de nueva generación, el poder de cálculo de las plataformas empotradas se ha visto incrementado. Estos nuevos procesadores son del tipo heterogéneo, donde el procesador principal se complementa con un co-procesador, como una Field Programmable Gate Array (FPGA). Esta tesis explora la implementación de un observador de estados basado en un modelo multicuerpo de un vehículo en hardware empotrado de nueva generación. Se han probado diferentes implementaciones para evaluar las ventajas de disponer de una FPGA en el procesador. Se ha desarrollado un nuevo observador de estados, parámetros y entradas que permite obtener estimaciones de gran precisión. Combinando dicho observador con un eficiente modelo multicuerpo de un vehículo, se consigue rendimiento en tiempo real.[Resumo] A simulación estase a converter nunha importante ferramenta na industria que permite minimizar custes e tempo tanto de desenvolvemento coma de test de novos productos. En automoción, o uso da simulación esténdese á implementación de sensores virtuais. Mediante un modelo preciso dun vehículo combinado cun observador de estados, pódense estimar variables que son caras ou imposíbeis de medir. A principal limitación para utilizar sensores virtuais nos vehículos é a baixa potencia computacional dos procesadores instalados a bordo, debido aos estritos requisitos impostos polos estándares de automoción. Co hardware de nova xeración, o poder de cálculo das plataformas empotradas vese incrementado. Estos novos procesadores son de tipo heteroxéneo, onde o procesador principal compleméntase cun co-procesador, coma unha Field Programmable Gate Array (FPGA). Esta tese explora a implementación dun observador de estados basado nun modelo multicorpo dun vehículo en hardware empotrado de nova xeración. Diferentes implementacións foron probadas para avaliar as vantaxes de dispoñer dunha FPGA no procesador. Un novo observador de estados, parámetros e entradas deseñado nesta tese permite obter estimacións de gran precisión. Combinando dito observador cun eficiente modelo multicorpo dun vehículo, conséguese rendemento de tempo real

    Suspension parameters analysis for different track conditions

    Get PDF
    Dissertação de mestrado integrado em Engenharia Mecânica (área de especialização em Sistemas Mecatrónicos)Este trabalho, aqui apresentado, tem como objetivo o estudo do comportamento do sistema de suspensão de um veículo ao atravessar estradas com obstáculos, como lombas ou buracos. Para atingir este objetivo, uma vasta revisão literária foi feita. Sendo este um tópico extenso, três tipos de revisão foram feitos. Primeiro, a um estudo global à tecnologia usava hoje em dia em pneus e nos sistemas de suspensão de veículos foi compilado. Uma breve menção à cinemática de veículos é empreendida. De seguida, a dinâmica do contacto pneu/solo é sistematicamente explanada, para compreender os diversos modelos de pneu (força) existentes. Adicionalmente, os conceitos fundamentais da análise da dinâmica multicorpo são expostos para justificar a modelação do veículo como um sistema multicorpo. Com toda a teoria apresentada, os conceitos previamente explicados são aplicados na prática para a formulação de um método que visa estimar a trajetória de um veículo atravessando uma qualquer estrada. O primeiro passo a executar é a escolha do modelo de pneu a utilizar. Percebe-se que se deve usar modelos matemáticos, culminando na escolha da Magic Formula. Os passos seguintes consistem na introdução de uma metodologia, que estima o contacto entre um pneu e o solo, para simular as dinâmicas pneu/solo de um veículo. Dois métodos diferentes são expostos: o primeiro para estradas completamente planas, sem obstáculos; o segundo, para estradas com obstáculos, como lombas ou buracos. Este modelo é posteriormente inserido num programa de análise das dinâmicas multicorpo, MUBODYNA3D, e diversas simulações são realizadas. Estas simulações começam pela definição do veículo como um sistema multicorpo, com corpos conectados por juntas cinemáticas. As primeiras simulações são realizadas numa estrada plana para validar os modelos e metodologias previamente criadas. O integrador, que integra os resultados das equações do movimento para prever a trajetória, é refinado. Finalmente, simulações com estradas com obstáculos são geradas. Por fim, os resultados dessas simulações são discutidos, percebendo-se que apresentam um valor inesperado. Ao atravessar um obstáculo, as rodas perdem o contacto com a superfície, provocando a descolagem do carro. No entanto, é concluído que a análise de sistemas multicorpo é de extrema relevância para a simulação de realidades complexas, produzindo resultados precisos.This work, hereby presented, has a primary target of studying the behaviour of a road vehicle’s suspension system, while it is traversing roads with big obstacles, such as potholes or speed bumps/humps. To accomplish this task, a broad literature review was made. Since this is an extensive topic, three types of review were made. Firstly, an overview of the state-of-the-art technology used in tires and suspension systems nowadays is compiled. A brief mention to vehicle kinematics is also made. Then, the dynamics of the contact tire/road are systematically explained, in order to understand the diverse tire force models that exist. Lastly, a rundown of the fundamental concepts of multibody dynamics analysis is exposed to substantiate the modelling of a vehicle as a multibody system later on. With the theory behind, all concepts previously abridged are put to practice, into the formulation of a method to estimate the trajectory of a vehicle crossing a certain road. The first step to execute this is to choose the tire force model to use. It is seen that, in this case, the mathematical models are the best choice, which culminates in the selection of the Magic Formula model. The following steps consist of introducing the contact estimation methodology created to simulate the tire/road dynamics of a vehicle. Two different methods are exposed: the first for fully flat roads, with no obstacles; the second, for road that possess obstacles, like bumps for example. This model is then inserted into a multibody dynamics analysis program, MUBODYNA3D, and some forward dynamic simulations are performed. These simulations start with the definition of the vehicle as a multibody system, with bodies connected by kinematic joints. The first simulations are performed in flat roads to validate the models and methodologies created. The solver, that integrates the results of the equations of motion to predict the trajectory, are then refined. Finally, simulations using roads with obstacles are conducted and the results analysed. In the end, the simulations result in some unexpected behaviour from the vehicle. While crossing an obstacle, it tends to lose contact with the surface and, thus, lift off the road, which is unrealistic. Nonetheless, it is concluded that multibody systems analysis is extremely important to simulate and analyse complex realities, with precise results

    Optimal Direct Yaw Moment Control of a 4WD Electric Vehicle

    Get PDF
    This thesis is concerned with electronic stability of an all-wheel drive electric vehicle with independent motors mounted in each wheel. The additional controllability and speed permitted using independent motors can be exploited to improve the handling and stability of electric vehicles. In this thesis, these improvements arise from employing a direct yaw moment control (DYC) system that seeks to adapt the understeer gradient of the vehicle and achieve neutral steer by employing a supervisory controller and simultaneously tracking an ideal yaw rate and ideal sideslip angle. DYC enhances vehicle stability by generating a corrective yaw moment realized by a torque vectoring controller which generates an optimal torque distribution among the four wheels. The torque allocation at each instant is computed by finding a solution to an optimization problem using gradient descent, a well-known algorithm that seeks the minimum cost employing the gradient of the cost function. A cost function seeking to minimize excessive wheel slip is proposed as the basis of the optimization problem, while the constraints come from the physical limitations of the motors and friction limits between the tires and road. The DYC system requires information about the tire forces in real-time, so this study presents a framework for estimating the tire force in all three coordinate directions. The sideslip angle is also a crucial quantity that must be measured or estimated but is outside the scope of this study. A comparative analysis of three different formulations of sliding mode control used for computation of the corrective yaw moment and an evaluation of how successfully they achieve neutral steer is presented. IPG Automotive’s CarMaker software, a high-fidelity vehicle simulator, was used as the plant model. A custom electric powertrain model was developed to enable any CarMaker vehicle to be reconfigured for independent control of the motors. This custom powertrain, called TVC_OpenXWD uses the torque/speed map of a Protean Pd18 implemented with lookup tables for each of the four motors. The TVC_OpenXWD powertrain model and controller were designed in MATLAB and Simulink and exported as C code to run them as plug-ins in CarMaker. Simulations of some common maneuvers, including the J-turn, sinusoidal steer, skid pad, and mu-split, indicate that employing DYC can achieve neutral steer. Additionally, it simultaneously tracks the ideal yaw rate and sideslip angle, while maximizing the traction on each tire[CB1] . The control system performance is evaluated based on its ability to achieve neutral steer by means of tracking the reference yaw rate, stabilizing the vehicle by means of reducing the sideslip angle, and to reduce chattering. A comparative analysis of sliding mode control employing a conventional switching function (CSMC), modified switching function (MSMC), and PID control (HSMC) demonstrates that the MSMC outperforms the other two methods in addition to the open loop system

    A multisensing setup for the intelligent tire monitoring

    Get PDF
    The present paper offers the chance to experimentally measure, for the first time, the internal tire strain by optical fiber sensors during the tire rolling in real operating conditions. The phenomena that take place during the tire rolling are in fact far from being completely understood. Despite several models available in the technical literature, there is not a correspondently large set of experimental observations. The paper includes the detailed description of the new multi-sensing technology for an ongoing vehicle measurement, which the research group has developed in the context of the project OPTYRE. The experimental apparatus is mainly based on the use of optical fibers with embedded Fiber Bragg Gratings sensors for the acquisition of the circumferential tire strain. Other sensors are also installed on the tire, such as a phonic wheel, a uniaxial accelerometer, and a dynamic temperature sensor. The acquired information is used as input variables in dedicated algorithms that allow the identification of key parameters, such as the dynamic contact patch, instantaneous dissipation and instantaneous grip. The OPTYRE project brings a contribution into the field of experimental grip monitoring of wheeled vehicles, with implications both on passive and active safety characteristics of cars and motorbikes
    corecore