4,779 research outputs found

    The Split Delivery Vehicle Routing Problem with Time Windows and Customer Inconvenience Constraints

    Get PDF
    In classical routing problems, each customer is visited exactly once. By contrast, when allowing split deliveries, customers may be served through multiple visits. This potentially results in substantial savings in travel costs. Even if split deliveries are beneficial to the transport company, several visits may be undesirable on the customer side: at each visit the customer has to interrupt his primary activities and handle the goods receipt. The contribution of the present paper consists in a thorough analysis of the possibilities and limitations of split delivery distribution strategies. To this end, we investigate two different types of measures for limiting customer inconvenience (a maximum number of visits and the temporal synchronization of deliveries) and evaluate the impact of these measures on carrier efficiency by means of different objective functions (comprising variable routing costs, costs related to route durations, fixed fleet costs). We consider the vehicle routing problem with time windows in which split deliveries are allowed (SDVRPTW) and define the corresponding generalization that takes into account customer inconvenience constraints (SDVRPTW-IC). We design an extended branch-and-cut algorithm to solve the SDVRPTW-IC and report on experimental results showing the impact of customer inconvenience constraints. We finally draw useful insights for logistics managers on the basis of the experimental analysis carried out

    Exploring Heuristics for the Vehicle Routing Problem with Split Deliveries and Time Windows

    Get PDF
    This dissertation investigates the Vehicle Routing Problem with Split Deliveries and Time Windows. This problem assumes a depot of homogeneous vehicles and set of customers with deterministic demands requiring delivery. Split deliveries allow multiple visits to a customer and time windows restrict the time during which a delivery can be made. Several construction and local search heuristics are tested to determine their relative usefulness in generating solutions for this problem. This research shows a particular subset of the local search operators is particularly influential on solution quality and run time. Conversely, the construction heuristics tested do not significantly impact either. Several problem features are also investigated to determine their impact. Of the features explored, the ratio of customer demand to vehicle ratio revealed a significant impact on solution quality and influence on the effectiveness of the heuristics tested. Finally, this research introduces an ant colony metaheuristic coupled with a local search heuristic embedded within a dynamic program seeking to solve a Military Inventory Routing Problem with multiple-customer routes, stochastic supply, and deterministic demand. Also proposed is a suite of test problems for the Military Inventory Routing Problem

    The Vehicle Routing Problem with Divisible Deliveries and Pickups

    Get PDF
    The vehicle routing problem with divisible deliveries and pickups is a new and interesting model within reverse logistics. Each customer may have a pickup and delivery demand that have to be served with capacitated vehicles. The pickup and the delivery quantities may be served, if beneficial, in two separate visits. The model is placed in the context of other delivery and pickup problems and formulated as a mixed-integer linear programming problem. In this paper, we study the savings that can be achieved by allowing the pickup and delivery quantities to be served separately with respect to the case where the quantities have to be served simultaneously. Both exact and heuristic results are analysed in depth for a better understanding of the problem structure and an average estimation of the savings due to the possibility of serving pickup and delivery quantities separately

    Vehicle Routing and Scheduling Problem for a multi-period, multi-perishable product system with time window: A Case study

    Get PDF
    [EN] The well-known Vehicle Routing Problem (VRP) is to find proper sequence of routes in order to minimize transportation costs. In this paper, a mixed-integer programming model is presented for a food distributer company and the model outputs are to determine the optimal routes and amount of pickup and delivery. In the objective function, the costs of transportation, holding, tardiness and earliness are considered simultaneously. The proposed model with respect to real conditions is multi-period and has two different time periods: one for dispatching vehicles to customers and suppliers and the other for receiving customers’ orders. Time window and split pickup and delivery are considered for perishable products. The proposed model is nonlinear and will be linearized using exact techniques. At the end, model is solved using GAMS and the sensitivity analysis is performed. The results indicate that the trend of changes in holding and transportation costs in compared to tardiness and earliness costs are closed together and are not so sensitive to demand changes.Rashidi Komijan, A.; Delavari, D. (2017). Vehicle Routing and Scheduling Problem for a multi-period, multi-perishable product system with time window: A Case study. International Journal of Production Management and Engineering. 5(2):45-53. doi:10.4995/ijpme.2017.5960SWORD455352DENG, A., MAO, C., & ZHOU, Y. (2009). Optimizing Research of an Improved Simulated Annealing Algorithm to Soft Time Windows Vehicle Routing Problem with Pick-up and Delivery. Systems Engineering - Theory & Practice, 29(5), 186-192. doi:10.1016/s1874-8651(10)60049-xAndersson, H., Hoff, A., Christiansen, M., Hasle, G., & Løkketangen, A. (2010). Industrial aspects and literature survey: Combined inventory management and routing. Computers & Operations Research, 37(9), 1515-1536. doi:10.1016/j.cor.2009.11.009Baldacci, R., Mingozzi, A., & Roberti, R. (2012). Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints. European Journal of Operational Research, 218(1), 1-6. doi:10.1016/j.ejor.2011.07.037Belfiore, P., & Yoshizaki, H. T. Y. (2013). Heuristic methods for the fleet size and mix vehicle routing problem with time windows and split deliveries. Computers & Industrial Engineering, 64(2), 589-601. doi:10.1016/j.cie.2012.11.007Cacchiani, V., Hemmelmayr, V.C., Tricoire, F., (2012). A set-covering based heuristic algorithm for the periodic vehicle routing problem. Discrete Applied Mathematics, 163(1), 53-64. https://doi.org/10.1016/j.dam.2012.08.032Cattaruzza, D., Absi, N., Feillet, D., & Vidal, T. (2014). A memetic algorithm for the Multi Trip Vehicle Routing Problem. European Journal of Operational Research, 236(3), 833-848. doi:10.1016/j.ejor.2013.06.012Çetinkaya, C., Karaoglan, I., & Gökçen, H. (2013). Two-stage vehicle routing problem with arc time windows: A mixed integer programming formulation and a heuristic approach. European Journal of Operational Research, 230(3), 539-550. doi:10.1016/j.ejor.2013.05.001Eksioglu, B., Vural, A. V., & Reisman, A. (2009). The vehicle routing problem: A taxonomic review. Computers & Industrial Engineering, 57(4), 1472-1483. doi:10.1016/j.cie.2009.05.009Hasani-Goodarzi, A., & Tavakkoli-Moghaddam, R. (2012). Capacitated Vehicle Routing Problem for Multi-Product Cross- Docking with Split Deliveries and Pickups. Procedia - Social and Behavioral Sciences, 62, 1360-1365. doi:10.1016/j.sbspro.2012.09.232Rahimi-Vahed, A., Gabriel Crainic, T., Gendreau, M., & Rei, W. (2015). Fleet-sizing for multi-depot and periodic vehicle routing problems using a modular heuristic algorithm. Computers & Operations Research, 53, 9-23. doi:10.1016/j.cor.2014.07.004Shahin Moghadam, S., Fatemi Ghomi, S. M. T., & Karimi, B. (2014). Vehicle routing scheduling problem with cross docking and split deliveries. Computers & Chemical Engineering, 69, 98-107. doi:10.1016/j.compchemeng.2014.06.015Silva, M. M., Subramanian, A., & Ochi, L. S. (2015). An iterated local search heuristic for the split delivery vehicle routing problem. Computers & Operations Research, 53, 234-249. doi:10.1016/j.cor.2014.08.005Taş, D., Jabali, O., & Van Woensel, T. (2014). A Vehicle Routing Problem with Flexible Time Windows. Computers & Operations Research, 52, 39-54. doi:10.1016/j.cor.2014.07.005Yu, B., & Yang, Z. Z. (2011). An ant colony optimization model: The period vehicle routing problem with time windows. Transportation Research Part E: Logistics and Transportation Review, 47(2), 166-181. doi:10.1016/j.tre.2010.09.010Zhang, S., Lee, C. K. M., Choy, K. L., Ho, W., & Ip, W. H. (2014). Design and development of a hybrid artificial bee colony algorithm for the environmental vehicle routing problem. Transportation Research Part D: Transport and Environment, 31, 85-99. doi:10.1016/j.trd.2014.05.01

    A large neighbourhood based heuristic for two-echelon routing problems

    Full text link
    In this paper, we address two optimisation problems arising in the context of city logistics and two-level transportation systems. The two-echelon vehicle routing problem and the two-echelon location routing problem seek to produce vehicle itineraries to deliver goods to customers, with transits through intermediate facilities. To efficiently solve these problems, we propose a hybrid metaheuristic which combines enumerative local searches with destroy-and-repair principles, as well as some tailored operators to optimise the selections of intermediate facilities. We conduct extensive computational experiments to investigate the contribution of these operators to the search performance, and measure the performance of the method on both problem classes. The proposed algorithm finds the current best known solutions, or better ones, for 95% of the two-echelon vehicle routing problem benchmark instances. Overall, for both problems, it achieves high-quality solutions within short computing times. Finally, for future reference, we resolve inconsistencies between different versions of benchmark instances, document their differences, and provide them all online in a unified format
    • …
    corecore