1,847 research outputs found

    A MATHEMATICAL MODEL FOR DELIVERY ZONE GROUPS BASED ON COURIER ASSIGNMENT OPTIMIZATION: A CASE STUDY IN A LOGISTICS SERVICE PROVIDER

    Get PDF
    Logistics service providers are the key stakeholder in Indonesian logistics activities that are growing significantly and face many challenges. In this research, a case study on a logistics service provider located in the city of Yogyakarta Indonesia is evaluated. The provider is currently experiencing rapid growth indicated by increasing delivery volume and scopes. However, optimal resource management has not been able to be adequately calculated, such as inefficient courier assignment and overloaded couriers' volume. Thus, this study aims to minimize total distances through optimal zone groups under several restrictions. An optimization approach is selected in this research by initially building a mathematical model using a standard form of linear programming. Then, the mathematical model is solved to generate minimum distances. The result indicated that the total minimum distances had been reached with considerable changes in delivery zone grouping, and the couriers' capacity was optimally utilized without overloaded capacity. These zone groups can be used as a reference for further research by taking into account some restrictions such as packages fluctuations as well as adding objective to minimize couriers' traveling time

    Combining heuristics with simulation and fuzzy logic to solve a flexible-size location routing problem under uncertainty

    Get PDF
    The location routing problem integrates both a facility location and a vehicle routing problem. Each of these problems are NP-hard in nature, which justifies the use of heuristic-based algorithms when dealing with large-scale instances that need to be solved in reasonable computing times. This paper discusses a realistic variant of the problem that considers facilities of different sizes and two types of uncertainty conditions. In particular, we assume that some customers’ demands are stochastic, while others follow a fuzzy pattern. An iterated local search metaheuristic is integrated with simulation and fuzzy logic to solve the aforementioned problem, and a series of computational experiments are run to illustrate the potential of the proposed algorithm.This work has been partially supported by the Spanish Ministry of Science (PID2019-111100RB-C21/AEI/10.13039/501100011033). In addition, it has received the support of the Doctoral School at the Universitat Oberta de Catalunya (Spain) and the Universidad de La Sabana (INGPhD-12-2020).Peer ReviewedPostprint (published version

    Survey on Ten Years of Multi-Depot Vehicle Routing Problems: Mathematical Models, Solution Methods and Real-Life Applications

    Get PDF
    A crucial practical issue encountered in logistics management is the circulation of final products from depots to end-user customers. When routing and scheduling systems are improved, they will not only improve customer satisfaction but also increase the capacity to serve a large number of customers minimizing time. On the assumption that there is only one depot, the key issue of distribution is generally identified and formulated as VRP standing for Vehicle Routing Problem. In case, a company having more than one depot, the suggested VRP is most unlikely to work out. In view of resolving this limitation and proposing alternatives, VRP with multiple depots and multi-depot MDVRP have been a focus of this paper. Carrying out a comprehensive analytical literature survey of past ten years on cost-effective Multi-Depot Vehicle Routing is the main aim of this research. Therefore, the current status of the MDVRP along with its future developments is reviewed at length in the paper

    A novel Dynamic programming approach for Two-Echelon Capacitated Vehicle Routing Problem in City Logistics with Environmental considerations

    Get PDF
    Abstract The paper proposes a Two-Echelon Capacitated Vehicle Routing Problem with Environmental consideration, intended for managing urban freight distribution in City Logistics. It presents a novel Dynamic programming approach that divides the main problem into several ones and uses an exact algorithm to obtain optimal route paths. The approach applies Fuzzy C-Means Clustering for assigning a group of customers to a satellite. The initial solution is improved with roulette selection, 2-opt, and Or-opt exchange heuristics. The approach was tested on benchmark instances, and obtained results are satisfactory. Moreover, the proposed method highlights the environmental improvement we can obtain in managing urban freight transportation

    A robust solving strategy for the vehicle routing problem with multiple depots and multiple objectives

    Get PDF
    This document presents the development of a robust solving strategy for the Vehicle Routing Problem with Multiple Depots and Multiple Objectives (MO-MDVRP). The problem tackeled in this work is the problem to minimize the total cost and the load imbalance in vehicle routing plan for distribution of goods. This thesis presents a MILP mathematical model and a solution strategy based on a Hybrid Multi- Objective Scatter Search Algorithm. Several experiments using simulated instances were run proving that the proposed method is quite robust, this is shown in execution times (less than 4 minutes for an instance with 8 depots and 300 customers); also, the proposed method showed good results compared to the results found with the MILP model for small instances (up to 20 clients and 2 depots).MaestríaMagister en Ingeniería Industria

    A fuzzy-based prediction approach for blood delivery using machine learning and genetic algorithm

    Get PDF
    Multiple diseases require a blood transfusion on daily basis. The process of a blood transfusion is successful when the type and amount of blood is available and when the blood is transported at the right time from the blood bank to the operating room. Blood distribution has a large portion of the cost in hospital logistics. The blood bank can serve various hospitals; however, amount of blood is limited due to donor shortage. The transportation must handle several requirements such as timely delivery, vibration avoidance, temperature maintenance, to keep the blood usable. In this paper, we discuss in first section the issues with blood delivery and constraint. The second section present routing and scheduling system based on artificial intelligence to deliver blood from the blood-banks to hospitals based on single blood bank and multiple blood banks with respect of the vehicle capacity used to deliver the blood and creating the shortest path. The third section consist on solution for predicting the blood needs for each hospital based on transfusion history using machine learning and fuzzy logic. The last section we compare the results of well-known solution with our solution in several cases such as shortage and sudden changes

    Planning and optimization of the petroleum products distribution network

    Get PDF

    Decision support system for vendor managed inventory supply chain:a case study

    Get PDF
    Vendor-managed inventory (VMI) is a widely used collaborative inventory management policy in which manufacturers manages the inventory of retailers and takes responsibility for making decisions related to the timing and extent of inventory replenishment. VMI partnerships help organisations to reduce demand variability, inventory holding and distribution costs. This study provides empirical evidence that significant economic benefits can be achieved with the use of a genetic algorithm (GA)-based decision support system (DSS) in a VMI supply chain. A two-stage serial supply chain in which retailers and their supplier are operating VMI in an uncertain demand environment is studied. Performance was measured in terms of cost, profit, stockouts and service levels. The results generated from GA-based model were compared to traditional alternatives. The study found that the GA-based approach outperformed traditional methods and its use can be economically justified in small- and medium-sized enterprises (SMEs)

    The Bi-objective Periodic Closed Loop Network Design Problem

    Get PDF
    © 2019 Elsevier Ltd. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Reverse supply chains are becoming a crucial part of retail supply chains given the recent reforms in the consumers’ rights and the regulations by governments. This has motivated companies around the world to adopt zero-landfill goals and move towards circular economy to retain the product’s value during its whole life cycle. However, designing an efficient closed loop supply chain is a challenging undertaking as it presents a set of unique challenges, mainly owing to the need to handle pickups and deliveries at the same time and the necessity to meet the customer requirements within a certain time limit. In this paper, we model this problem as a bi-objective periodic location routing problem with simultaneous pickup and delivery as well as time windows and examine the performance of two procedures, namely NSGA-II and NRGA, to solve it. The goal is to find the best locations for a set of depots, allocation of customers to these depots, allocation of customers to service days and the optimal routes to be taken by a set of homogeneous vehicles to minimise the total cost and to minimise the overall violation from the customers’ defined time limits. Our results show that while there is not a significant difference between the two algorithms in terms of diversity and number of solutions generated, NSGA-II outperforms NRGA when it comes to spacing and runtime.Peer reviewedFinal Accepted Versio
    corecore