221 research outputs found

    In-trail dynamics of multiple CDTI-equipped aircraft queues

    Get PDF
    One of the potential problems of in-trail self-spacing with a Cockpit Display of Traffic Information (CDTI) is whether dynamic oscillations would occur in a queue of aircraft flying an approach, similar to the ""accordion'' effect seem with the queue of automobiles in stop-and-go traffic. In order to gain some insight into this potential problem, a brief experiment was conducted with the Transport Systems Research Vehicle (TSRV) ground-based simulator equipped with CDTI which presented the position of other aircraft in the area. Three simulation sessions were conducted wherein queues of up to nine aircraft were built, each one self-spacing on the preceding aircraft. The aircraft crews were rotated to ensure that the pilots had no prior knowledge of the lead aircraft behavior they would be following. Two different spacing criteria were employed: a constant time predictor criterion and a constant time delay criterion. The experiment failed to uncover any dynamic oscillatory tendencies in queues of seven to nine aircraft

    Remote control of an impact demonstration vehicle

    Get PDF
    Uplink and downlink telemetry systems were installed in a Boeing 720 aircraft that was remotely flown from Rogers Dry Lake at Edwards Air Force Base and impacted into a designated crash site on the lake bed. The controlled impact demonstration (CID) program was a joint venture by the National Aeronautics and Space Administration (NASA) and the Federal Aviation Administration (FAA) to test passenger survivability using antimisting kerosene (AMK) to inhibit postcrash fires, improve passenger seats and restraints, and improve fire-retardent materials. The uplink telemetry system was used to remotely control the aircraft and activate onboard systems from takeoff until after impact. Aircraft systems for remote control, aircraft structural response, passenger seat and restraint systems, and anthropomorphic dummy responses were recorded and displayed by the downlink stems. The instrumentation uplink and downlink systems are described

    Flight performance of a navigation, guidance, and control system concept for automatic approach and landing of space shuttle orbiter

    Get PDF
    Unpowered automatic approaches and landings were conducted to study navigation, guidance, and control problems associated with terminal area approach and landing for the space shuttle vehicle. The flight tests were performed in a Convair 990 aircraft equipped with a digital flight control computer connected to the aircraft control system and displays. The tests were designed to evaluate the performance of a navigation and guidance concept that utilized blended radio/inertial navigation with VOR, DME, and ILS as the ground navigation aids. Results from 36 automatic approaches and landings from 11,300 m (37,000 ft) to touchdown are presented. Preliminary results indicate that this concept may provide sufficient accuracy to accomplish automatic landing of the shuttle orbiter without air-breathing engines

    Simulator evaluation of displays for a revised takeoff performance monitoring system

    Get PDF
    Cockpit displays for a Takeoff Performance Monitoring System (TOPMS) to provide pilots with graphic and alphanumeric information pertinent to their decision to continue or abort a takeoff are evaluated. Revised head-down and newly developed head-up displays were implemented on electronic screens in the real-time Transport Systems Research Vehicle (TSRV) Simulator for the Boeing 737 airplane at the Langley Research Center and evaluated by 17 NASA, U.S. Air Force, airline, and industry pilots. Both types of displays were in color, but they were not dependent upon it. The TOPMS head-down display is composed of a runway graphic overlaid with symbolic status and advisory information related to both the expected takeoff point and the predicted stop point (in the event an abort becomes necessary). In addition, an overall Situation Advisory Flag indicates a preferred course of action based on analysis of the various elements of airplane performance and system status. A simpler head-up display conveys most of this same information and relates it to the visual scene. The evaluation pilots found the displays to be credible, easy to monitor, and appropriate for the task. In particular, the pilots said the head-up display was monitored with very little effort and did not obstruct or distract them from monitoring the simulated out-the-window runway scene. This report augments NASA TP-2908, 1989

    Preliminary evaluation of time and distance spacing cues using a cockpit displayed target

    Get PDF
    A simulator evaluation was conducted to compare time and distance selfspacing cues wherein a pilot establishes and maintains separation from a cockpit displayed target. Langley's terminal configured vehicle simulator which represents an advanced aircraft employing cathode ray tubes for primary flight displays and highly augmented flight control modes was used. Three tasks, two in trail rendezvous tasks (target straight and level and target turning) and one merge task were utilized. Three pilots flew each task twice, once with a time predictor cue and once with a distance predictor. Both time and distance spacing methods are operationally acceptable to the pilots. A slight preference was indicated by the pilots for the distance based predictor in performing rendezvous and merging tasks. Analysis of the recorded data showed the spacing performance with both predictors was essentially the same

    Flight researh at NASA Ames Research Center: A test pilot's perspective

    Get PDF
    In 1976 NASA elected to assign responsibility for each of the various flight regimes to individual research centers. The NASA Ames Research Center at Moffett Field, California was designated lead center for vertical and short takeoff and landing, V/STOL research. The three most recent flight research airplanes being flown at the center are discussed from the test pilot's perspective: the Quiet Short Haul Research Aircraft; the XV-15 Tilt Rotor Research Aircraft; and the Rotor Systems Research Aircraft

    Evaluation of the Digital Flight Control System as installed in the F-14A Tomcat for the all-weather aircraft carrier landing mission

    Get PDF
    The purpose of this test was to evaluate the Digital Flight Control System (DFOS), Operational Flight Program (OFP) 4.2.2 as installed in the F-14A Tomcat for the all-weather aircraft earner landing mission

    Flight test experience and controlled impact of a large, four-engine, remotely piloted airplane

    Get PDF
    A controlled impact demonstration (CID) program using a large, four engine, remotely piloted transport airplane was conducted. Closed loop primary flight control was performed from a ground based cockpit and digital computer in conjunction with an up/down telemetry link. Uplink commands were received aboard the airplane and transferred through uplink interface systems to a highly modified Bendix PB-20D autopilot. Both proportional and discrete commands were generated by the ground pilot. Prior to flight tests, extensive simulation was conducted during the development of ground based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems. However, manned flight tests were the primary method of verification and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and the systems required to accomplish the remotely piloted mission are discussed

    Driving automation: Learning from aviation about design philosophies

    Get PDF
    Full vehicle automation is predicted to be on British roads by 2030 (Walker et al., 2001). However, experience in aviation gives us some cause for concern for the 'drive-by-wire' car (Stanton and Marsden, 1996). Two different philosophies have emerged in aviation for dealing with the human factor: hard vs. soft automation, depending on whether the computer or the pilot has ultimate authority (Hughes and Dornheim, 1995). This paper speculates whether hard or soft automation provides the best solution for road vehicles, and considers an alternative design philosophy in vehicles of the future based on coordination and cooperation

    A simulation study of crew performance in operating an advanced transport aircraft in an automated terminal area environment

    Get PDF
    A simulation study assessing crew performance operating an advanced transport aircraft in an automated terminal area environment is described. The linking together of the Langley Advanced Transport Operating Systems Aft Flight Deck Simulator with the Terminal Area Air Traffic Model Simulation was required. The realism of an air traffic control (ATC) environment with audio controller instructions for the flight crews and the capability of inserting a live aircraft into the terminal area model to interact with computer generated aircraft was provided. Crew performance using the advanced displays and two separate control systems (automatic and manual) in flying area navigation routes in the automated ATC environment was assessed. Although the crews did not perform as well using the manual control system, their performances were within acceptable operational limits with little increase in workload. The crews favored using the manual control system and felt they were more alert and aware of their environment when using it
    • …
    corecore