151,380 research outputs found

    Effect of modifications of aerodynamic characteristics of a single-stage-to-orbit vehicle at Mach 5.9

    Get PDF
    Hypersonic stability, control, and performance characteristics were determined on a single-stage-to-orbit vehicle based on control-configured stability concepts. The configuration (0.006-scale model) had a large body with a small 50 deg swept wing. Two vertical-fin arrangements were investigated which consisted of a large center-line vertical tail and small wing-tip fins. The wing-tip fins had movable surfaces called controllers which could be deflected outward. Longitudinal and lateral directional characteristics were obtained over an angle-of-attack rage from 0 deg to 40 deg. The effects of tip-fin controller deflection on roll- and yaw-control characteristics at a sideslip angle of 0 deg were obtained. This investigation was conducted in the Langley 20 Inch Mach 6 Tunnel

    Generic hypersonic vehicle performance model

    Get PDF
    An integrated computational model of a generic hypersonic vehicle was developed for the purpose of determining the vehicle's performance characteristics, which include the lift, drag, thrust, and moment acting on the vehicle at specified altitude, flight condition, and vehicular configuration. The lift, drag, thrust, and moment are developed for the body fixed coordinate system. These forces and moments arise from both aerodynamic and propulsive sources. SCRAMjet engine performance characteristics, such as fuel flow rate, can also be determined. The vehicle is assumed to be a lifting body with a single aerodynamic control surface. The body shape and control surface location are arbitrary and must be defined. The aerodynamics are calculated using either 2-dimensional Newtonian or modified Newtonian theory and approximate high-Mach-number Prandtl-Meyer expansion theory. Skin-friction drag was also accounted for. The skin-friction drag coefficient is a function of the freestream Mach number. The data for the skin-friction drag coefficient values were taken from NASA Technical Memorandum 102610. The modeling of the vehicle's SCRAMjet engine is based on quasi 1-dimensional gas dynamics for the engine diffuser, nozzle, and the combustor with heat addition. The engine has three variable inputs for control: the engine inlet diffuser area ratio, the total temperature rise through the combustor due to combustion of the fuel, and the engine internal expansion nozzle area ratio. The pressure distribution over the vehicle's lower aft body surface, which acts as an external nozzle, is calculated using a combination of quasi 1-dimensional gas dynamic theory and Newtonian or modified Newtonian theory. The exhaust plume shape is determined by matching the pressure inside the plume, calculated from the gas dynamic equations, with the freestream pressure, calculated from Newtonian or Modified Newtonian theory. In this manner, the pressure distribution along the vehicle after body expansion surface is then determined. The aerodynamic modeling, the engine modeling, and the exhaust plume analysis are described in more detail. A description of the computer code used to perform the above calculations is given and an input/output example is then given. The computer code is available on a Macintosh floppy disk

    Series active variable geometry suspension application to comfort enhancement

    Get PDF
    This paper explores the potential of the Series Active Variable Geometry Suspension (SAVGS) for comfort and road holding enhancement. The SAVGS concept introduces significant nonlinearities associated with the rotation of the mechanical link that connects the chassis to the spring-damper unit. Although conventional linearization procedures implemented in multi-body software packages can deal with this configuration, they produce linear models of reduced applicability. To overcome this limitation, an alternative linearization approach based on energy conservation principles is proposed and successfully applied to one corner of the car, thus enabling the use of linear robust control techniques. An H∞ controller is synthesized for this simplified quarter-car linear model and tuned based on the singular value decomposition of the system's transfer matrix. The proposed control is thoroughly tested with one-corner and full-vehicle nonlinear multi-body models. In the SAVGS setup, the actuator appears in series with the passive spring-damper and therefore it would typically be categorized as a low bandwidth or slow active suspension. However, results presented in this paper for an SAVGS-retrofitted Grand Tourer show that this technology has the potential to also improve the high frequency suspension functions such as comfort and road holding

    Integrated vehicle dynamics control using active steering, driveline and braking

    Get PDF
    This thesis investigates the principle of integrated vehicle dynamics control through proposing a new control configuration to coordinate active steering subsystems and dynamic stability control (DSC) subsystems. The active steering subsystems include Active Front Steering (AFS) and Active Rear Steering (ARS); the dynamic stability control subsystems include driveline based, brake based and driveline plus brake based DSC subsystems. A nonlinear vehicle handling model is developed for this study, incorporating the load transfer effects and nonlinear tyre characteristics. This model consists of 8 degrees of freedom that include longitudinal, lateral and yaw motions of the vehicle and body roll motion relative to the chassis about the roll axis as well as the rotational dynamics of four wheels. The lateral vehicle dynamics are analysed for the entire handling region and two distinct control objectives are defined, i.e. steerability and stability which correspond to yaw rate tracking and sideslip motion bounding, respectively. Active steering subsystem controllers and dynamic stability subsystem controller are designed by using the Sliding Mode Control (SMC) technique and phase-plane method, respectively. The former is used as the steerability controller to track the reference yaw rate and the latter serves as the stability controller to bound the sideslip motion of the vehicle. Both stand-alone controllers are evaluated over a range of different handling regimes. The stand-alone steerability controllers are found to be very effective in improving vehicle steering response up to the handling limit and the stand-alone stability controller is found to be capable of performing the task of maintaining vehicle stability at the operating points where the active steering subsystems cannot. Based on the two independently developed stand-alone controllers, a novel rule based integration scheme for AFS and driveline plus brake based DSC is proposed to optimise the overall vehicle performance by minimising interactions between the two subsystems and extending functionalities of individual subsystems. The proposed integrated control system is assessed by comparing it to corresponding combined control. Through the simulation work conducted under critical driving conditions, the proposed integrated control system is found to lead to a trade-off between stability and limit steerability, improved vehicle stability and reduced influence on the longitudinal vehicle dynamics

    Deriving a Control-Oriented Model for an Axisymmetric Vehicle With the Power-Law Revolution Nose

    Get PDF
    The purpose of this paper is to construct a new general vehicle model as an open fundamental material for the guidance and control research. In this study, parameterized configuration, aerodynamics calculation, control-oriented modeling, stability analysis, and nominal trajectory design are performed for the general vehicle model. First, the aerodynamic configuration is parameterized as an axisymmetric body with a power-law revolution nose. Then, an engineering method considering inviscid flow, base drag and skin friction is used for the aerodynamics calculation, and a control-oriented fitting model of longitudinal aerodynamics is established based on the analysis of the correlation between aerodynamic force and the parameters of Mach number, attack angle, elevator deflection and height. Next, the aerothermodynamic environment prediction of power-law revolution axisymmetric hypersonic vehicle (PRAHV) is discussed, and the nose heating rate formula of PRAHV is established. The stability analysis and nominal trajectory design of PRAHV is performed based on the fitting model and the heating rate formula. The stability analysis shows that both the static stability and dynamic stability of the vehicle are unstable. The nominal trajectory of unpowered longitudinal maneuvering is achieved by the hp-adaptive pseudospectral method, which demonstrated that the availability of the control-oriented model established in this paper. In conclusion, this work provides a fundamental object for further study of vehicle guidance, control, and evaluation

    TRAJECTORY AND ATTITUDE CONTROL OF AN UNDERWATER TOWED VEHICLE

    Get PDF
    ABSTRACT A new concept of control technique to perform operation of trajectory maneuvering to a controllable underwater towed vehicle moving in a designated path with a required attitude is presented. A trajectory and attitude control technique for the towed vehicle is proposed in order to accomplish the vehicle's trajectory and attitude manipulations. This technique is based on a fuzzy algorithm. The towed vehicle in the research consists of a cylindrical main body equipped with several active horizontal and vertical control surfaces. Numerical simulation on the hydrodynamic and control behavior of the towed vehicle under this control manipulation is conducted based on a fully 3-D hydrodynamic model of an underwater towed vehicle. In the model the governing equation of the towed cable is based on the Ablow and Schechter method. The six-degrees-of-freedom equations of motion for an underwater vehicle simulation proposed by Gertler and Hagen are adopted to estimate the hydrodynamic performance of the towed vehicle. In numerical simulation the deflections of vehicle's control surfaces are governed by the proposed fuzzy controller to manipulate the vehicle traveling along a 3-D stipulated trajectory configuration and required attitude. The values of the deflections are taken as input parameters for the hydrodynamic model at every time step. The performance of the towed vehicle under different designated trajectory and attitude control manipulations can then be investigated with the hydrodynamic model

    A Hazard Analysis Based Approach to Improve the Landing Safety of a Blended-wing-body Remotely Piloted Vehicle

    Get PDF
    AbstractThe BUAA-BWB remotely piloted vehicle (RPV) designed by our research team encountered an unexpected landing safety problem in flight experiments. It has obviously affected further research project for Blended-wing-body (BWB) aircraft configuration characteristics. Searching for a safety improvement is an urgent requirement in the development work of the RPV. Combining with vehicle characteristics, a new systemic method called System-Theoretic Process Analysis (STPA) has been imported to apply on the RPV flight experiment hazard analysis. An uncontrolled system behavior “path sagging phenomenon” is identified by implementing a 3 degree of freedom simulation based on wind tunnel experiment data and establishing landing safety system dynamics archetype, then a derived safety improvement requirement emerges. To obtain higher safety design effectiveness and considering safety design precedence, a new longitudinal control surface “belly-flap” is used to eliminate hazards in landing. Finally, Flight experiments show that the hazardous factor has been correctly identified and the landing safety has been efficiently improved

    Solar-electric-propulsion cargo vehicles for split/sprint Mars mission

    Get PDF
    In support of the proposed exploration of Mars, an unmanned cargo ferry SEMM1 (Solar Electric Mars Mission) was designed. The vehicle is based on solar electric propulsion, and required to transport a cargo of 61,000 kg. The trajectory is a combination of spirals; first, out from LEO, then around the sun, then spiral down to low Mars orbit. The spacecraft produces 3.03 MWe power using photovoltaic flexible blanket arrays. Ion thrusters using argon as a propellant were selected to drive the ship, providing about 60 Newtons of thrust in low Earth orbit. The configuration is based on two long truss beams to which the 24 individual, self-deployable, solar arrays are attached. The main body module supports the two beams and houses the computers, electrical, and control equipment. The thruster module is attached to the rear of the main body, and the cargo to the front

    Mobile Formation Coordination and Tracking Control for Multiple Non-holonomic Vehicles

    Full text link
    This paper addresses forward motion control for trajectory tracking and mobile formation coordination for a group of non-holonomic vehicles on SE(2). Firstly, by constructing an intermediate attitude variable which involves vehicles' position information and desired attitude, the translational and rotational control inputs are designed in two stages to solve the trajectory tracking problem. Secondly, the coordination relationships of relative positions and headings are explored thoroughly for a group of non-holonomic vehicles to maintain a mobile formation with rigid body motion constraints. We prove that, except for the cases of parallel formation and translational straight line formation, a mobile formation with strict rigid-body motion can be achieved if and only if the ratios of linear speed to angular speed for each individual vehicle are constants. Motion properties for mobile formation with weak rigid-body motion are also demonstrated. Thereafter, based on the proposed trajectory tracking approach, a distributed mobile formation control law is designed under a directed tree graph. The performance of the proposed controllers is validated by both numerical simulations and experiments
    corecore