7,139 research outputs found

    Parallel Multi-Hypothesis Algorithm for Criticality Estimation in Traffic and Collision Avoidance

    Full text link
    Due to the current developments towards autonomous driving and vehicle active safety, there is an increasing necessity for algorithms that are able to perform complex criticality predictions in real-time. Being able to process multi-object traffic scenarios aids the implementation of a variety of automotive applications such as driver assistance systems for collision prevention and mitigation as well as fall-back systems for autonomous vehicles. We present a fully model-based algorithm with a parallelizable architecture. The proposed algorithm can evaluate the criticality of complex, multi-modal (vehicles and pedestrians) traffic scenarios by simulating millions of trajectory combinations and detecting collisions between objects. The algorithm is able to estimate upcoming criticality at very early stages, demonstrating its potential for vehicle safety-systems and autonomous driving applications. An implementation on an embedded system in a test vehicle proves in a prototypical manner the compatibility of the algorithm with the hardware possibilities of modern cars. For a complex traffic scenario with 11 dynamic objects, more than 86 million pose combinations are evaluated in 21 ms on the GPU of a Drive PX~2

    A New Approach To Estimate The Collision Probability For Automotive Applications

    Full text link
    We revisit the computation of probability of collision in the context of automotive collision avoidance (the estimation of a potential collision is also referred to as conflict detection in other contexts). After reviewing existing approaches to the definition and computation of a collision probability we argue that the question "What is the probability of collision within the next three seconds?" can be answered on the basis of a collision probability rate. Using results on level crossings for vector stochastic processes we derive a general expression for the upper bound of the distribution of the collision probability rate. This expression is valid for arbitrary prediction models including process noise. We demonstrate in several examples that distributions obtained by large-scale Monte-Carlo simulations obey this bound and in many cases approximately saturate the bound. We derive an approximation for the distribution of the collision probability rate that can be computed on an embedded platform. In order to efficiently sample this probability rate distribution for determination of its characteristic shape an adaptive method to obtain the sampling points is proposed. An upper bound of the probability of collision is then obtained by one-dimensional numerical integration over the time period of interest. A straightforward application of this method applies to the collision of an extended object with a second point-like object. Using an abstraction of the second object by salient points of its boundary we propose an application of this method to two extended objects with arbitrary orientation. Finally, the distribution of the collision probability rate is identified as the distribution of the time-to-collision.Comment: Revised and restructured version, discussion of extended vehicles expanded, section on TTC expanded, references added, other minor changes, 17 pages, 18 figure

    A Learning-based Stochastic MPC Design for Cooperative Adaptive Cruise Control to Handle Interfering Vehicles

    Full text link
    Vehicle to Vehicle (V2V) communication has a great potential to improve reaction accuracy of different driver assistance systems in critical driving situations. Cooperative Adaptive Cruise Control (CACC), which is an automated application, provides drivers with extra benefits such as traffic throughput maximization and collision avoidance. CACC systems must be designed in a way that are sufficiently robust against all special maneuvers such as cutting-into the CACC platoons by interfering vehicles or hard braking by leading cars. To address this problem, a Neural- Network (NN)-based cut-in detection and trajectory prediction scheme is proposed in the first part of this paper. Next, a probabilistic framework is developed in which the cut-in probability is calculated based on the output of the mentioned cut-in prediction block. Finally, a specific Stochastic Model Predictive Controller (SMPC) is designed which incorporates this cut-in probability to enhance its reaction against the detected dangerous cut-in maneuver. The overall system is implemented and its performance is evaluated using realistic driving scenarios from Safety Pilot Model Deployment (SPMD).Comment: 10 pages, Submitted as a journal paper at T-I

    On the Robotic Uncertainty of Fully Autonomous Traffic

    Full text link
    Recent transportation research suggests that autonomous vehicles (AVs) have the potential to improve traffic flow efficiency as they are able to maintain smaller car-following distances. Nevertheless, being a unique class of ground robots, AVs are susceptible to robotic errors, particularly in their perception module, leading to uncertainties in their movements and an increased risk of collisions. Consequently, conservative operational strategies, such as larger headway and slower speeds, are implemented to prioritize safety over traffic capacity in real-world operations. To reconcile the inconsistency, this paper proposes an analytical model framework that delineates the endogenous reciprocity between traffic safety and efficiency that arises from robotic uncertainty in AVs. Car-following scenarios are extensively examined, with uncertain headway as the key parameter for bridging the single-lane capacity and the collision probability. A Markov chain is then introduced to describe the dynamics of the lane capacity, and the resulting expected collision-inclusive capacity is adopted as the ultimate performance measure for fully autonomous traffic. With the help of this analytical model, it is possible to support the settings of critical parameters in AV operations and incorporate optimization techniques to assist traffic management strategies for autonomous traffic

    Dynamic Occupancy Grid Prediction for Urban Autonomous Driving: A Deep Learning Approach with Fully Automatic Labeling

    Full text link
    Long-term situation prediction plays a crucial role in the development of intelligent vehicles. A major challenge still to overcome is the prediction of complex downtown scenarios with multiple road users, e.g., pedestrians, bikes, and motor vehicles, interacting with each other. This contribution tackles this challenge by combining a Bayesian filtering technique for environment representation, and machine learning as long-term predictor. More specifically, a dynamic occupancy grid map is utilized as input to a deep convolutional neural network. This yields the advantage of using spatially distributed velocity estimates from a single time step for prediction, rather than a raw data sequence, alleviating common problems dealing with input time series of multiple sensors. Furthermore, convolutional neural networks have the inherent characteristic of using context information, enabling the implicit modeling of road user interaction. Pixel-wise balancing is applied in the loss function counteracting the extreme imbalance between static and dynamic cells. One of the major advantages is the unsupervised learning character due to fully automatic label generation. The presented algorithm is trained and evaluated on multiple hours of recorded sensor data and compared to Monte-Carlo simulation

    Motion Planning for Autonomous Vehicles in Partially Observable Environments

    Get PDF
    Unsicherheiten, welche aus Sensorrauschen oder nicht beobachtbaren Manöverintentionen anderer Verkehrsteilnehmer resultieren, akkumulieren sich in der Datenverarbeitungskette eines autonomen Fahrzeugs und führen zu einer unvollständigen oder fehlinterpretierten Umfeldrepräsentation. Dadurch weisen Bewegungsplaner in vielen Fällen ein konservatives Verhalten auf. Diese Dissertation entwickelt zwei Bewegungsplaner, welche die Defizite der vorgelagerten Verarbeitungsmodule durch Ausnutzung der Reaktionsfähigkeit des Fahrzeugs kompensieren. Diese Arbeit präsentiert zuerst eine ausgiebige Analyse über die Ursachen und Klassifikation der Unsicherheiten und zeigt die Eigenschaften eines idealen Bewegungsplaners auf. Anschließend befasst sie sich mit der mathematischen Modellierung der Fahrziele sowie den Randbedingungen, welche die Sicherheit gewährleisten. Das resultierende Planungsproblem wird mit zwei unterschiedlichen Methoden in Echtzeit gelöst: Zuerst mit nichtlinearer Optimierung und danach, indem es als teilweise beobachtbarer Markov-Entscheidungsprozess (POMDP) formuliert und die Lösung mit Stichproben angenähert wird. Der auf nichtlinearer Optimierung basierende Planer betrachtet mehrere Manöveroptionen mit individuellen Auftrittswahrscheinlichkeiten und berechnet daraus ein Bewegungsprofil. Er garantiert Sicherheit, indem er die Realisierbarkeit einer zufallsbeschränkten Rückfalloption gewährleistet. Der Beitrag zum POMDP-Framework konzentriert sich auf die Verbesserung der Stichprobeneffizienz in der Monte-Carlo-Planung. Erstens werden Informationsbelohnungen definiert, welche die Stichproben zu Aktionen führen, die eine höhere Belohnung ergeben. Dabei wird die Auswahl der Stichproben für das reward-shaped Problem durch die Verwendung einer allgemeinen Heuristik verbessert. Zweitens wird die Kontinuität in der Reward-Struktur für die Aktionsauswahl ausgenutzt und dadurch signifikante Leistungsverbesserungen erzielt. Evaluierungen zeigen, dass mit diesen Planern große Erfolge in Fahrversuchen und Simulationsstudien mit komplexen Interaktionsmodellen erreicht werden

    Continuous Risk Measures for Driving Support

    Full text link
    In this paper, we compare three different model-based risk measures by evaluating their stengths and weaknesses qualitatively and testing them quantitatively on a set of real longitudinal and intersection scenarios. We start with the traditional heuristic Time-To-Collision (TTC), which we extend towards 2D operation and non-crash cases to retrieve the Time-To-Closest-Encounter (TTCE). The second risk measure models position uncertainty with a Gaussian distribution and uses spatial occupancy probabilities for collision risks. We then derive a novel risk measure based on the statistics of sparse critical events and so-called survival conditions. The resulting survival analysis shows to have an earlier detection time of crashes and less false positive detections in near-crash and non-crash cases supported by its solid theoretical grounding. It can be seen as a generalization of TTCE and the Gaussian method which is suitable for the validation of ADAS and AD

    Fe(3): An Evaluation Tool for Low-Altitude Air Traffic Operations

    Get PDF
    The concepts of unmanned aircraft system traffic management (UTM) and urban air mobility (UAM) are introducing high-density operations in low altitude airspace in closer proximity to populated areas than conventional high-altitude air traffic. The Flexible engine for Fast-time Evaluation of Flight Environments (Fe (sup 3)) provides the capability of statistically analyzing the high-density, high-fidelity, and low-altitude traffic system under numerous scenarios, such that stake holders can study impacts of factors in the low-altitude high-density traffic system and define requirements, policies, and protocols needed to support a safe yet efficient traffic system, and even assess operational risks and optimize flight schedules without conducting infeasible and cost-prohibitive flight tests that involve a large volume of aerial vehicles. This work provides an introduction to this simulation tool including its architecture and various models involved. Its performance and sample application in UAM and UTM are also presented
    corecore