228 research outputs found

    Optimized Distributed Processing in a Vehicular Cloud Architecture

    Get PDF
    The introduction of cloud data centres has opened new possibilities for the storage and processing of data, augmenting the limited capabilities of peripheral devices. Large data centres tend to be located away from the end users, which increases latency and power consumption in the interconnecting networks. These limitations led to the introduction of edge processing where small-distributed data centres or fog units are located at the edge of the network close to the end user. Vehicles can have substantial processing capabilities, often un-used, in their on-board-units (OBUs). These can be used to augment the network edge processing capabilities. In this paper, we extend our previous work and develop a mixed integer linear programming (MILP) formulation that optimizes the allocation of networking and processing resources to minimize power consumption. Our edge processing architecture includes vehicular processing nodes, edge processing and cloud infrastructure. Furthermore, in this paper our optimization formulation includes delay. Compared to power minimization, our new formulation reduces delay significantly, while resulting in a very limited increase in power consumption

    Incentive-Based Policies for Environmental Management in Developing Countries

    Get PDF
    Incentive-based instruments use financial means, directly or indirectly, to motivate polluters to reduce the health and environmental risks posed by their facilities, processes, or products. These instruments typically provide monetary and near-monetary rewards for polluting less,and impose costs of various types for polluting more. According to economic theory and modeling exercises, incentive-based instruments such as pollution charges and tradable permits are more cost-effective than traditional forms of regulation. Incentive-based approaches also can address small sources of pollution such as households that are not easily controlled with traditional forms of regulation, as well as provide a reason for polluters to improve performance relative to existing regulatory requirements. Finally, incentive-based forms of regulation can provide a stimulus for technological change and innovation in pollution control

    Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities

    Full text link
    Smart cities demand resources for rich immersive sensing, ubiquitous communications, powerful computing, large storage, and high intelligence (SCCSI) to support various kinds of applications, such as public safety, connected and autonomous driving, smart and connected health, and smart living. At the same time, it is widely recognized that vehicles such as autonomous cars, equipped with significantly powerful SCCSI capabilities, will become ubiquitous in future smart cities. By observing the convergence of these two trends, this article advocates the use of vehicles to build a cost-effective service network, called the Vehicle as a Service (VaaS) paradigm, where vehicles empowered with SCCSI capability form a web of mobile servers and communicators to provide SCCSI services in smart cities. Towards this direction, we first examine the potential use cases in smart cities and possible upgrades required for the transition from traditional vehicular ad hoc networks (VANETs) to VaaS. Then, we will introduce the system architecture of the VaaS paradigm and discuss how it can provide SCCSI services in future smart cities, respectively. At last, we identify the open problems of this paradigm and future research directions, including architectural design, service provisioning, incentive design, and security & privacy. We expect that this paper paves the way towards developing a cost-effective and sustainable approach for building smart cities.Comment: 32 pages, 11 figure

    Road Side Unit-Assisted Learning-Based Partial Task Offloading for Vehicular Edge Computing System

    Get PDF
    The rapid development of vehicular networks creates diverse ultra-low latency constrained and computation-intensive applications, which bring challenges to both communication and computation capabilities of the vehicles and their transmission. By offloading tasks to the edge servers or vehicles in the neighbourhood, vehicular edge computing (VEC) provides a cost-efficient solution to this problem. However, the channel state information and network structure in the vehicular network varies fast because of the inherent mobility of vehicle nodes, which brings an extra challenge to task offloading. To address this challenge, we formulate the task offloading in vehicular network as a multi-armed bandit (MAB) problem and propose a novel road side unit (RSU)-assisted learning-based partial task offloading (RALPTO) algorithm. The algorithm enables vehicle nodes to learn the delay performance of the service provider while offloading tasks. Specifically, the RSU could assist the learning process by sharing the learning information among vehicle nodes, which improves the adaptability of the algorithm to the time-varying networks. Simulation results demonstrate that the proposed algorithm achieves lower delay and better learning performance compared with the benchmark algorithms
    • …
    corecore