1,168 research outputs found

    Vehicle Re-identification Using Quadruple Directional Deep Learning Features

    Full text link
    In order to resist the adverse effect of viewpoint variations for improving vehicle re-identification performance, we design quadruple directional deep learning networks to extract quadruple directional deep learning features (QD-DLF) of vehicle images. The quadruple directional deep learning networks are with similar overall architecture, including the same basic deep learning architecture but different directional feature pooling layers. Specifically, the same basic deep learning architecture is a shortly and densely connected convolutional neural network to extract basic feature maps of an input square vehicle image in the first stage. Then, the quadruple directional deep learning networks utilize different directional pooling layers, i.e., horizontal average pooling (HAP) layer, vertical average pooling (VAP) layer, diagonal average pooling (DAP) layer and anti-diagonal average pooling (AAP) layer, to compress the basic feature maps into horizontal, vertical, diagonal and anti-diagonal directional feature maps, respectively. Finally, these directional feature maps are spatially normalized and concatenated together as a quadruple directional deep learning feature for vehicle re-identification. Extensive experiments on both VeRi and VehicleID databases show that the proposed QD-DLF approach outperforms multiple state-of-the-art vehicle re-identification methods.Comment: this paper has been submitted to IEEE Transactions on Intelligent Transportation Systems, under revie

    Vehicle Re-Identification Based on Complementary Features

    Full text link
    In this work, we present our solution to the vehicle re-identification (vehicle Re-ID) track in AI City Challenge 2020 (AIC2020). The purpose of vehicle Re-ID is to retrieve the same vehicle appeared across multiple cameras, and it could make a great contribution to the Intelligent Traffic System(ITS) and smart city. Due to the vehicle's orientation, lighting and inter-class similarity, it is difficult to achieve robust and discriminative representation feature. For the vehicle Re-ID track in AIC2020, our method is to fuse features extracted from different networks in order to take advantages of these networks and achieve complementary features. For each single model, several methods such as multi-loss, filter grafting, semi-supervised are used to increase the representation ability as better as possible. Top performance in City-Scale Multi-Camera Vehicle Re-Identification demonstrated the advantage of our methods, and we got 5-th place in the vehicle Re-ID track of AIC2020. The codes are available at https://github.com/gggcy/AIC2020_ReID

    Exploring Spatial Significance via Hybrid Pyramidal Graph Network for Vehicle Re-identification

    Full text link
    Existing vehicle re-identification methods commonly use spatial pooling operations to aggregate feature maps extracted via off-the-shelf backbone networks. They ignore exploring the spatial significance of feature maps, eventually degrading the vehicle re-identification performance. In this paper, firstly, an innovative spatial graph network (SGN) is proposed to elaborately explore the spatial significance of feature maps. The SGN stacks multiple spatial graphs (SGs). Each SG assigns feature map's elements as nodes and utilizes spatial neighborhood relationships to determine edges among nodes. During the SGN's propagation, each node and its spatial neighbors on an SG are aggregated to the next SG. On the next SG, each aggregated node is re-weighted with a learnable parameter to find the significance at the corresponding location. Secondly, a novel pyramidal graph network (PGN) is designed to comprehensively explore the spatial significance of feature maps at multiple scales. The PGN organizes multiple SGNs in a pyramidal manner and makes each SGN handles feature maps of a specific scale. Finally, a hybrid pyramidal graph network (HPGN) is developed by embedding the PGN behind a ResNet-50 based backbone network. Extensive experiments on three large scale vehicle databases (i.e., VeRi776, VehicleID, and VeRi-Wild) demonstrate that the proposed HPGN is superior to state-of-the-art vehicle re-identification approaches

    DCDLearn: Multi-order Deep Cross-distance Learning for Vehicle Re-Identification

    Full text link
    Vehicle re-identification (Re-ID) has become a popular research topic owing to its practicability in intelligent transportation systems. Vehicle Re-ID suffers the numerous challenges caused by drastic variation in illumination, occlusions, background, resolutions, viewing angles, and so on. To address it, this paper formulates a multi-order deep cross-distance learning (\textbf{DCDLearn}) model for vehicle re-identification, where an efficient one-view CycleGAN model is developed to alleviate exhaustive and enumerative cross-camera matching problem in previous works and smooth the domain discrepancy of cross cameras. Specially, we treat the transferred images and the reconstructed images generated by one-view CycleGAN as multi-order augmented data for deep cross-distance learning, where the cross distances of multi-order image set with distinct identities are learned by optimizing an objective function with multi-order augmented triplet loss and center loss to achieve the camera-invariance and identity-consistency. Extensive experiments on three vehicle Re-ID datasets demonstrate that the proposed method achieves significant improvement over the state-of-the-arts, especially for the small scale dataset

    Stripe-based and Attribute-aware Network: A Two-Branch Deep Model for Vehicle Re-identification

    Full text link
    Vehicle re-identification (Re-ID) has been attracting increasing interest in the field of computer vision due to the growing utilization of surveillance cameras in public security. However, vehicle Re-ID still suffers a similarity challenge despite the efforts made to solve this problem. This challenge involves distinguishing different instances with nearly identical appearances. In this paper, we propose a novel two-branch stripe-based and attribute-aware deep convolutional neural network (SAN) to learn the efficient feature embedding for vehicle Re-ID task. The two-branch neural network, consisting of stripe-based branch and attribute-aware branches, can adaptively extract the discriminative features from the visual appearance of vehicles. A horizontal average pooling and dimension-reduced convolutional layers are inserted into the stripe-based branch to achieve part-level features. Meanwhile, the attribute-aware branch extracts the global feature under the supervision of vehicle attribute labels to separate the similar vehicle identities with different attribute annotations. Finally, the part-level and global features are concatenated together to form the final descriptor of the input image for vehicle Re-ID. The final descriptor not only can separate vehicles with different attributes but also distinguish vehicle identities with the same attributes. The extensive experiments on both VehicleID and VeRi databases show that the proposed SAN method outperforms other state-of-the-art vehicle Re-ID approaches

    Multi-Domain Learning and Identity Mining for Vehicle Re-Identification

    Full text link
    This paper introduces our solution for the Track2 in AI City Challenge 2020 (AICITY20). The Track2 is a vehicle re-identification (ReID) task with both the real-world data and synthetic data. Our solution is based on a strong baseline with bag of tricks (BoT-BS) proposed in person ReID. At first, we propose a multi-domain learning method to joint the real-world and synthetic data to train the model. Then, we propose the Identity Mining method to automatically generate pseudo labels for a part of the testing data, which is better than the k-means clustering. The tracklet-level re-ranking strategy with weighted features is also used to post-process the results. Finally, with multiple-model ensemble, our method achieves 0.7322 in the mAP score which yields third place in the competition. The codes are available at https://github.com/heshuting555/AICITY2020_DMT_VehicleReID.Comment: Solution for AI City Challenge, CVPR2020 Workshop. Codes are at https://github.com/heshuting555/AICITY2020_DMT_VehicleReI

    Eliminating cross-camera bias for vehicle re-identification

    Full text link
    Vehicle re-identification (reID) often requires recognize a target vehicle in large datasets captured from multi-cameras. It plays an important role in the automatic analysis of the increasing urban surveillance videos, which has become a hot topic in recent years. However, the appearance of vehicle images is easily affected by the environment that various illuminations, different backgrounds and viewpoints, which leads to the large bias between different cameras. To address this problem, this paper proposes a cross-camera adaptation framework (CCA), which smooths the bias by exploiting the common space between cameras for all samples. CCA first transfers images from multi-cameras into one camera to reduce the impact of the illumination and resolution, which generates the samples with the similar distribution. Then, to eliminate the influence of background and focus on the valuable parts, we propose an attention alignment network (AANet) to learn powerful features for vehicle reID. Specially, in AANet, the spatial transfer network with attention module is introduced to locate a series of the most discriminative regions with high-attention weights and suppress the background. Moreover, comprehensive experimental results have demonstrated that our proposed CCA can achieve excellent performances on benchmark datasets VehicleID and VeRi-776

    DSAM: A Distance Shrinking with Angular Marginalizing Loss for High Performance Vehicle Re-identificatio

    Full text link
    Vehicle Re-identification (ReID) is an important yet challenging problem in computer vision. Compared to other visual objects like faces and persons, vehicles simultaneously exhibit much larger intraclass viewpoint variations and interclass visual similarities, making most exiting loss functions designed for face recognition and person ReID unsuitable for vehicle ReID. To obtain a high-performance vehicle ReID model, we present a novel Distance Shrinking with Angular Marginalizing (DSAM) loss function to perform hybrid learning in both the Original Feature Space (OFS) and the Feature Angular Space (FAS) using the local verification and the global identification information. Specifically, it shrinks the distance between samples of the same class locally in the Original Feature Space while keeps samples of different classes far away in the Feature Angular Space. The shrinking and marginalizing operations are performed during each iteration of the training process and are suitable for different SoftMax based loss functions. We evaluate the DSAM loss function on three large vehicle ReID datasets with detailed analyses and extensive comparisons with many competing vehicle ReID methods. Experimental results show that our DSAM loss enhances the SoftMax loss by a large margin on the PKU-VD1-Large dataset: 10.41% for mAP, 5.29% for cmc1, and 4.60% for cmc5. Moreover, the mAP is increased by 9.34% on the PKU-VehicleID dataset and 8.73% on the VeRi-776 dataset. Source code will be released to facilitate further studies in this research direction

    Attribute-guided Feature Learning Network for Vehicle Re-identification

    Full text link
    Vehicle re-identification (reID) plays an important role in the automatic analysis of the increasing urban surveillance videos, which has become a hot topic in recent years. However, it poses the critical but challenging problem that is caused by various viewpoints of vehicles, diversified illuminations and complicated environments. Till now, most existing vehicle reID approaches focus on learning metrics or ensemble to derive better representation, which are only take identity labels of vehicle into consideration. However, the attributes of vehicle that contain detailed descriptions are beneficial for training reID model. Hence, this paper proposes a novel Attribute-Guided Network (AGNet), which could learn global representation with the abundant attribute features in an end-to-end manner. Specially, an attribute-guided module is proposed in AGNet to generate the attribute mask which could inversely guide to select discriminative features for category classification. Besides that, in our proposed AGNet, an attribute-based label smoothing (ALS) loss is presented to better train the reID model, which can strength the distinct ability of vehicle reID model to regularize AGNet model according to the attributes. Comprehensive experimental results clearly demonstrate that our method achieves excellent performance on both VehicleID dataset and VeRi-776 dataset.Comment: arXiv admin note: text overlap with arXiv:1912.1019

    Looking GLAMORous: Vehicle Re-Id in Heterogeneous Cameras Networks with Global and Local Attention

    Full text link
    Vehicle re-identification (re-id) is a fundamental problem for modern surveillance camera networks. Existing approaches for vehicle re-id utilize global features and local features for re-id by combining multiple subnetworks and losses. In this paper, we propose GLAMOR, or Global and Local Attention MOdules for Re-id. GLAMOR performs global and local feature extraction simultaneously in a unified model to achieve state-of-the-art performance in vehicle re-id across a variety of adversarial conditions and datasets (mAPs 80.34, 76.48, 77.15 on VeRi-776, VRIC, and VeRi-Wild, respectively). GLAMOR introduces several contributions: a better backbone construction method that outperforms recent approaches, group and layer normalization to address conflicting loss targets for re-id, a novel global attention module for global feature extraction, and a novel local attention module for self-guided part-based local feature extraction that does not require supervision. Additionally, GLAMOR is a compact and fast model that is 10x smaller while delivering 25% better performance
    corecore