60 research outputs found

    Application of Image Processing and Three-Dimensional Data Reconstruction Algorithm Based on Traffic Video in Vehicle Component Detection

    Get PDF
    Vehicle detection is one of the important technologies in intelligent video surveillance systems. Owing to the perspective projection imaging principle of cameras, traditional two-dimensional (2D) images usually distort the size and shape of vehicles. In order to solve these problems, the traffic scene calibration and inverse projection construction methods are used to project the three-dimensional (3D) information onto the 2D images. In addition, a vehicle target can be characterized by several components, and thus vehicle detection can be fulfilled based on the combination of these components. The key characteristics of vehicle targets are distinct during a single day; for example, the headlight brightness is more significant at night, while the vehicle taillight and license plate color are much more prominent in the daytime. In this paper, by using the background subtraction method and Gaussian mixture model, we can realize the accurate detection of target lights at night. In the daytime, however, the detection of the license plate and taillight of a vehicle can be fulfilled by exploiting the background subtraction method and the Markov random field, based on the spatial geometry relation between the corresponding components. Further, by utilizing Kalman filters to follow the vehicle tracks, detection accuracy can be further improved. Finally, experiment results demonstrate the effectiveness of the proposed methods

    Moving object detection via TV-L1 optical flow in fall-down videos

    Get PDF
    There is a growing demand for surveillance systems that can detect fall-down events because of the increased number of surveillance cameras being installed in many public indoor and outdoor locations. Fall-down event detection has been vigorously and extensively researched for safety purposes, particularly to monitor elderly peoples, patients, and toddlers. This computer vision detector has become more affordable with the development of high-speed computer networks and low-cost video cameras. This paper proposes moving object detection method based on human motion analysis for human fall-down events. The method comprises of three parts, which are preprocessing part to reduce image noises, motion detection part by using TV-L1 optical flow algorithm, and performance measure part. The last part will analyze the results of the object detection part in term of the bounding boxes, which are compared with the given ground truth. The proposed method is tested on Fall Down Detection (FDD) dataset and compared with Gunnar-Farneback optical flow by measuring intersection over union (IoU) of the output with respect to the ground truth bounding box. The experimental results show that the proposed method achieves an average IoU of 0.92524

    Evaluating Impacts of Shared E-scooters from the Lens of Sustainable Transportation

    Get PDF
    As the popularity of shared micromobility is increasing worldwide, city governments are struggling to regulate and manage these innovative travel technologies that have several benefits, including increasing accessibility, reducing emissions, and providing affordable travel options. This dissertation evaluates the impacts of shared micromobility from the perspective of sustainable transportation to provide recommendations to decision-makers, planners, and engineers for improving these emerging travel technologies. The dissertation focuses on four core aspects of shared micromobility as follows: 1) Safety: I evaluated police crash reports of motor vehicle involving e-scooter and bicycle crashes using the most recent PBCAT crash typology to provide a comprehensive picture of demographics of riders crashing and crash characteristics, as well as mechanism of crash and crash risk, 2) Economics: I estimated the demand elasticity of e-scooters deployed, segmented by weekday type, land use, category of service providers based on fleet size using negative binomial fixed effect regression model and K-means clustering, 3) Expanding micromobility to emerging economies: Using dynamic stated preference pivoting survey and panel data mixed logit model, I assessed the intentions to adopt shared micromobility in mid-sized cities of developing countries, where these innovative technology could be the first wave of decarbonizing transportation sector, and 4) Micromobility data application: I identified five usage-clusters of shared e-scooter trips using combination of Principal Component Analysis (PCA) and K-means clustering to propose a novel framework for using micromobility data to inform data-driven decision on broader policy goals. Based on the key findings of the research, I provide five recommendations as follows: 1) decision-makers should be proactive in incorporating new travel technologies like shared micromobility, 2) city governments should leverage shared micromobility usage and operation data to empower the decision-making process, 3) each shared micromobility vehicles should be approached uniquely for improving road safety, 4) city governments should consider regulating the number of service providers and their fleet sizes, and 5) decision-makers should prioritize expanding shared micromobility in emerging economies as one of the first efforts to the decarbonizing transportation sector

    Freeway traffic incident detection using large scale traffic data and cameras

    Get PDF
    Automatic incident detection (AID) is crucial for reducing non-recurrent congestion caused by traffic incidents. In this paper, a data-driven AID framework is proposed that can leverage large-scale historical traffic data along with the inherent topology of the traffic networks to obtain robust traffic patterns. Such traffic patterns can be compared with the real-time traffic data to detect traffic incidents in the road network. Our AID framework consists of two basic steps for traffic pattern estimation. First, we estimate a robust univariate speed threshold using historical traffic information from individual sensors. This step can be parallelized using MapReduce framework thereby making it feasible to implement the framework over large networks. Our study shows that such robust thresholds can improve incident detection performance significantly compared to traditional threshold determination. Second, we leverage the knowledge of the topology of the road network to construct threshold heatmaps and perform image denoising to obtain spatio-temporally denoised thresholds. We used two image denoising techniques, bilateral filtering and total variation for this purpose. Our study shows that overall AID performance can be improved significantly using bilateral filter denoising compared to the noisy thresholds or thresholds obtained using total variation denoising. The second research objective involved detecting traffic congestion from camera images. Two modern deep learning techniques, the traditional deep convolutional neural network (DCNN) and you only look once (YOLO) models, were used to detect traffic congestion from camera images. A shallow model, support vector machine (SVM) was also used for comparison and to determine the improvements that might be obtained using costly GPU techniques. The YOLO model achieved the highest accuracy of 91.2%, followed by the DCNN model with an accuracy of 90.2%; 85% of images were correctly classified by the SVM model. Congestion regions located far away from the camera, single-lane blockages, and glare issues were found to affect the accuracy of the models. Sensitivity analysis showed that all of the algorithms were found to perform well in daytime conditions, but nighttime conditions were found to affect the accuracy of the vision system. However, for all conditions, the areas under the curve (AUCs) were found to be greater than 0.9 for the deep models. This result shows that the models performed well in challenging conditions as well. The third and final part of this study aimed at detecting traffic incidents from CCTV videos. We approached the incident detection problem using trajectory-based approach for non-congested conditions and pixel-based approach for congested conditions. Typically, incident detection from cameras has been approached using either supervised or unsupervised algorithms. A major hindrance in the application of supervised techniques for incident detection is the lack of a sufficient number of incident videos and the labor-intensive, costly annotation tasks involved in the preparation of a labeled dataset. In this study, we approached the incident detection problem using semi-supervised techniques. Maximum likelihood estimation-based contrastive pessimistic likelihood estimation (CPLE) was used for trajectory classification and identification of incident trajectories. Vehicle detection was performed using state-of-the-art deep learning-based YOLOv3, and simple online real-time tracking (SORT) was used for tracking. Results showed that CPLE-based trajectory classification outperformed the traditional semi-supervised techniques (self learning and label spreading) and its supervised counterpart by a significant margin. For pixel-based incident detection, we used a novel Histogram of Optical Flow Magnitude (HOFM) feature descriptor to detect incident vehicles using SVM classifier based on all vehicles detected by YOLOv3 object detector. We show in this study that this approach can handle both congested and non-congested conditions. However, trajectory-based approach works considerably faster (45 fps compared to 1.4 fps) and also achieves better accuracy compared to pixel-based approach for non-congested conditions. Therefore, for optimal resource usage, trajectory-based approach can be used for non-congested traffic conditions while for congested conditions, pixel-based approach can be used

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Computational Approaches for Remote Monitoring of Symptoms and Activities

    Get PDF
    We now have a unique phenomenon where significant computational power, storage, connectivity, and built-in sensors are carried by many people willingly as part of their life style; two billion people now use smart phones. Unique and innovative solutions using smart phones are motivated by rising health care cost in both the developed and developing worlds. In this work, development of a methodology for building a remote symptom monitoring system for rural people in developing countries has been explored. Design, development, deployment, and evaluation of e-ESAS is described. The system’s performance was studied by analyzing feedback from users. A smart phone based prototype activity detection system that can detect basic human activities for monitoring by remote observers was developed and explored in this study. The majority voting fusion technique, along with decision tree learners were used to classify eight activities in a multi-sensor framework. This multimodal approach was examined in details and evaluated for both single and multi-subject cases. Time-delay embedding with expectation-maximization for Gaussian Mixture Model was explored as a way of developing activity detection system using reduced number of sensors, leading to a lower computational cost algorithm. The systems and algorithms developed in this work focus on means for remote monitoring using smart phones. The smart phone based remote symptom monitoring system called e-ESAS serves as a working tool to monitor essential symptoms of patients with breast cancer by doctors. The activity detection system allows a remote observer to monitor basic human activities. For the activity detection system, the majority voting fusion technique in multi-sensor architecture is evaluated for eight activities in both single and multiple subjects cases. Time-delay embedding with expectation-maximization algorithm for Gaussian Mixture Model was studied using data from multiple single sensor cases
    • …
    corecore