15,410 research outputs found

    Smart Road Sensing for Intelligent Transportation Systems

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.In recent years, intelligent transportation has attracted more and more attention. The sensing of Intelligent transportation is currently the focus in intelligent transportation research, and the acquisition of road traffic flow and vehicle speed is an important way of information perception in intelligent transportation systems. However, the current road traffic monitoring methods lack a cost-effective method to meet the demand. This research is committed to detecting traffic flow and speed information by deploying low-cost, lightweight magnetic sensors on the road, and providing advanced intelligent road sensing technology for intelligent transportation systems. Specifically, the main research content of this article is embodied in the following aspects: Research on using a single magnetic sensor for small vehicle detection and speed estimation. This research innovatively proposes a method that uses a magnetic sensor to achieve the detection and vehicle speed estimation as multiple sensors and proposes the use of a magnetic dipole analogous vehicle to establish a vehicle motion model. Besides that, the influence of different directions of the vehicle on the sensor signal detection effect is also carried out, and the direction of the image fluctuation of the sensor’s three axes is analyzed, so as to distinguish the different directions of the vehicle. Research on the detection and classification of multiple vehicle types based on a single magnetic sensor. This research deeply analyzes the application of electromagnetics to intelligent transportation systems, and derives and verifies the combined model of multiple magnetic dipoles. This research proposes a vehicle type classification technology based on magnetic field fluctuation images. This research deals with small cars, medium-sized cars and large-sized cars, processes and analyzes the degree of the response of different types of cars to magnetic field information, and proposes the derivation of a combined speed model. Research on multi-vehicle data association based on magnetic field sensors. This research proposes a low-cost multi-vehicle and multi-sensor tracking data association framework based on magnetic sensors. Due to the deployment of multiple sensors, the problem of sensor data loss and clock calibration needs to be solved. This research based on Kalman filter to gain vehicle position and speed estimation, as well as the linear discriminant classification model, proposes an efficient and convenient trajectory-oriented multi-hypothesis model

    FULLY AUTONOMOUS SELF-POWERED INTELLIGENT WIRELESS SENSOR FOR REAL-TIME TRAFFIC SURVEILLANCE IN SMART CITIES

    Get PDF
    Reliable, real-time traffic surveillance is an integral and crucial function of the 21st century intelligent transportation systems (ITS) network. This technology facilitates instantaneous decision-making, improves roadway efficiency, and maximizes existing transportation infrastructure capacity, making transportation systems safe, efficient, and more reliable. Given the rapidly approaching era of smart cities, the work detailed in this dissertation is timely in that it reports on the design, development, and implementation of a novel, fully-autonomous, self-powered intelligent wireless sensor for real-time traffic surveillance. Multi-disciplinary, innovative integration of state-of-the-art, ultra-low-power embedded systems, smart physical sensors, and the wireless sensor network—powered by intelligent algorithms—are the basis of the developed Intelligent Vehicle Counting and Classification Sensor (iVCCS) platform. The sensor combines an energy-harvesting subsystem to extract energy from multiple sources and enable sensor node self-powering aimed at potentially indefinite life. A wireless power receiver was also integrated to remotely charge the sensor’s primary battery. Reliable and computationally efficient intelligent algorithms for vehicle detection, speed and length estimation, vehicle classification, vehicle re-identification, travel-time estimation, time-synchronization, and drift compensation were fully developed, integrated, and evaluated. Several length-based vehicle classification schemes particular to the state of Oklahoma were developed, implemented, and evaluated using machine learning algorithms and probabilistic modeling of vehicle magnetic length. A feature extraction employing different techniques was developed to determine suitable and efficient features for magnetic signature-based vehicle re-identification. Additionally, two vehicle re-identification models based on matching vehicle magnetic signature from a single magnetometer were developed. Comprehensive system evaluation and extensive data analyses were performed to fine-tune and validate the sensor, ensuring reliable and robust operation. Several field studies were conducted under various scenarios and traffic conditions on a number of highways and urban roads and resulted in 99.98% detection accuracy, 97.4782% speed estimation accuracy, and 97.6951% classification rate when binning vehicles into four groups based on their magnetic length. Threshold-based, re-identification results revealed 65.25%~100% identification rate for a window of 25~500 vehicles. Voting-based, re-identification evaluation resulted in 90~100% identification rate for a window of 25~500 vehicles. The developed platform is portable and cost-effective. A single sensor node costs only $30 and can be installed for short-term use (e.g., work zone safety, traffic flow studies, roadway and bridge design, traffic management in atypical situations), as well as long-term use (e.g., collision avoidance at intersections, traffic monitoring) on highways, roadways, or roadside surfaces. The power consumption assessment showed that the sensor is operational for several years. The iVCCS platform is expected to significantly supplement other data collection methods used for traffic monitoring throughout the United States. The technology is poised to play a vital role in tomorrow’s smart cities

    Wireless magnetic sensor network for road traffic monitoring and vehicle classification

    Get PDF
    Efficiency of transportation of people and goods is playing a vital role in economic growth. A key component for enabling effective planning of transportation networks is the deployment and operation of autonomous monitoring and traffic analysis tools. For that reason, such systems have been developed to register and classify road traffic usage. In this paper, we propose a novel system for road traffic monitoring and classification based on highly energy efficient wireless magnetic sensor networks. We develop novel algorithms for vehicle speed and length estimation and vehicle classification that use multiple magnetic sensors. We also demonstrate that, using such a low-cost system with simplified installation and maintenance compared to current solutions, it is possible to achieve highly accurate estimation and a high rate of positive vehicle classification

    Smart Traction Control Systems for Electric Vehicles Using Acoustic Road-type Estimation

    Full text link
    The application of traction control systems (TCS) for electric vehicles (EV) has great potential due to easy implementation of torque control with direct-drive motors. However, the control system usually requires road-tire friction and slip-ratio values, which must be estimated. While it is not possible to obtain the first one directly, the estimation of latter value requires accurate measurements of chassis and wheel velocity. In addition, existing TCS structures are often designed without considering the robustness and energy efficiency of torque control. In this work, both problems are addressed with a smart TCS design having an integrated acoustic road-type estimation (ARTE) unit. This unit enables the road-type recognition and this information is used to retrieve the correct look-up table between friction coefficient and slip-ratio. The estimation of the friction coefficient helps the system to update the necessary input torque. The ARTE unit utilizes machine learning, mapping the acoustic feature inputs to road-type as output. In this study, three existing TCS for EVs are examined with and without the integrated ARTE unit. The results show significant performance improvement with ARTE, reducing the slip ratio by 75% while saving energy via reduction of applied torque and increasing the robustness of the TCS.Comment: Accepted to be published by IEEE Trans. on Intelligent Vehicles, 22 Jan 201

    MagSpeed: A Novel Method of Vehicle Speed Estimation Through A Single Magnetic Sensor

    Full text link
    © 2019 IEEE. Internet of Things (IoT) is playing an increasingly important role in Intelligent Transportation Systems (ITS) for real-time sensing and communication. In ITS, the velocity of vehicles provides important information for traffic management. However, the present methods for monitoring vehicle speed have many shortcomings. In this paper, we propose MagSpeed, a novel vehicle speed estimation method based on a small magnetic sensor. The developed magnetic sensor system is wireless, cost-effective, and environmental-friendly. Through modelling of local magnetic field perturbations caused by a moving vehicle, we extract the characteristics of magnetic waveforms for speed estimation. In addition, we compare the performance of the models with other speed estimation algorithms, which shows the superior accuracy of the proposed technique in speed estimation

    A Survey and Comparison of Low-Cost Sensing Technologies for Road Traffic Monitoring

    Get PDF
    Abstract This paper reviews low-cost vehicle and pedestrian detection methods and compares their accuracy. The main goal of this survey is to summarize the progress achieved to date and to help identify the sensing technologies that provide high detection accuracy and meet requirements related to cost and ease of installation. Special attention is paid to wireless battery-powered detectors of small dimensions that can be quickly and effortlessly installed alongside traffic lanes (on the side of a road or on a curb) without any additional supporting structures. The comparison of detection methods presented in this paper is based on results of experiments that were conducted with a variety of sensors in a wide range of configurations. During experiments various sensor sets were analyzed. It was shown that the detection accuracy can be significantly improved by fusing data from appropriately selected set of sensors. The experimental results reveal that accurate vehicle detection can be achieved by using sets of passive sensors. Application of active sensors was necessary to obtain satisfactory results in case of pedestrian detection

    Intelligent Traffic Monitoring Systems for Vehicle Classification: A Survey

    Full text link
    A traffic monitoring system is an integral part of Intelligent Transportation Systems (ITS). It is one of the critical transportation infrastructures that transportation agencies invest a huge amount of money to collect and analyze the traffic data to better utilize the roadway systems, improve the safety of transportation, and establish future transportation plans. With recent advances in MEMS, machine learning, and wireless communication technologies, numerous innovative traffic monitoring systems have been developed. In this article, we present a review of state-of-the-art traffic monitoring systems focusing on the major functionality--vehicle classification. We organize various vehicle classification systems, examine research issues and technical challenges, and discuss hardware/software design, deployment experience, and system performance of vehicle classification systems. Finally, we discuss a number of critical open problems and future research directions in an aim to provide valuable resources to academia, industry, and government agencies for selecting appropriate technologies for their traffic monitoring applications.Comment: Published in IEEE Acces

    Towards a real-time microscopic emissions model

    Get PDF
    This article presents a new approach to microscopic road traffic exhaust emission modelling. The model described uses data from the SCOOT demand-responsive traffic control system implemented in over 170 cities across the world. Estimates of vehicle speed and classification are made using data from inductive detector loops located on every SCOOT link. This data feeds into a microscopic traffic model to enable enhanced modelling of the driving modes of vehicles (acceleration, deceleration, idling and cruising). Estimates of carbon monoxide emissions are made by applying emission factors from an extensive literature review. A critical appraisal of the development and validation of the model is given before the model is applied to a study of the impact of high emitting vehicles. The article concludes with a discussion of the requirements for the future development and benefits of the application of such a model

    Vehicle classification in intelligent transport systems: an overview, methods and software perspective

    Get PDF
    Vehicle Classification (VC) is a key element of Intelligent Transportation Systems (ITS). Diverse ranges of ITS applications like security systems, surveillance frameworks, fleet monitoring, traffic safety, and automated parking are using VC. Basically, in the current VC methods, vehicles are classified locally as a vehicle passes through a monitoring area, by fixed sensors or using a compound method. This paper presents a pervasive study on the state of the art of VC methods. We introduce a detailed VC taxonomy and explore the different kinds of traffic information that can be extracted via each method. Subsequently, traditional and cutting edge VC systems are investigated from different aspects. Specifically, strengths and shortcomings of the existing VC methods are discussed and real-time alternatives like Vehicular Ad-hoc Networks (VANETs) are investigated to convey physical as well as kinematic characteristics of the vehicles. Finally, we review a broad range of soft computing solutions involved in VC in the context of machine learning, neural networks, miscellaneous features, models and other methods
    • …
    corecore