737 research outputs found

    Analysis of machine learning techniques applied to sensory detection of vehicles in intelligent crosswalks

    Get PDF
    Improving road safety through artificial intelligence-based systems is now crucial turning smart cities into a reality. Under this highly relevant and extensive heading, an approach is proposed to improve vehicle detection in smart crosswalks using machine learning models. Contrarily to classic fuzzy classifiers, machine learning models do not require the readjustment of labels that depend on the location of the system and the road conditions. Several machine learning models were trained and tested using real traffic data taken from urban scenarios in both Portugal and Spain. These include random forest, time-series forecasting, multi-layer perceptron, support vector machine, and logistic regression models. A deep reinforcement learning agent, based on a state-of-the-art double-deep recurrent Q-network, is also designed and compared with the machine learning models just mentioned. Results show that the machine learning models can efficiently replace the classic fuzzy classifier.Ministry of Economy and Knowledge of the Andalusian Government, Spain 5947info:eu-repo/semantics/publishedVersio

    Intelligent Traffic Monitoring Systems for Vehicle Classification: A Survey

    Full text link
    A traffic monitoring system is an integral part of Intelligent Transportation Systems (ITS). It is one of the critical transportation infrastructures that transportation agencies invest a huge amount of money to collect and analyze the traffic data to better utilize the roadway systems, improve the safety of transportation, and establish future transportation plans. With recent advances in MEMS, machine learning, and wireless communication technologies, numerous innovative traffic monitoring systems have been developed. In this article, we present a review of state-of-the-art traffic monitoring systems focusing on the major functionality--vehicle classification. We organize various vehicle classification systems, examine research issues and technical challenges, and discuss hardware/software design, deployment experience, and system performance of vehicle classification systems. Finally, we discuss a number of critical open problems and future research directions in an aim to provide valuable resources to academia, industry, and government agencies for selecting appropriate technologies for their traffic monitoring applications.Comment: Published in IEEE Acces

    Real-time head movement tracking through earables in moving vehicles

    Get PDF
    Abstract. The Internet of Things is enabling innovations in the automotive industry by expanding the capabilities of vehicles by connecting them with the cloud. One important application domain is traffic safety, which can benefit from monitoring the driver’s condition to see if they are capable of safely handling the vehicle. By detecting drowsiness, inattentiveness, and distraction of the driver it is possible to react before accidents happen. This thesis explores how accelerometer and gyroscope data collected using earables can be used to classify the orientation of the driver’s head in a moving vehicle. It is found that machine learning algorithms such as Random Forest and K-Nearest Neighbor can be used to reach fairly accurate classifications even without applying any noise reduction to the signal data. Data cleaning and transformation approaches are studied to see how the models could be improved further. This study paves the way for the development of driver monitoring systems capable of reacting to anomalous driving behavior before traffic accidents can happen

    Vehicle classification in intelligent transport systems: an overview, methods and software perspective

    Get PDF
    Vehicle Classification (VC) is a key element of Intelligent Transportation Systems (ITS). Diverse ranges of ITS applications like security systems, surveillance frameworks, fleet monitoring, traffic safety, and automated parking are using VC. Basically, in the current VC methods, vehicles are classified locally as a vehicle passes through a monitoring area, by fixed sensors or using a compound method. This paper presents a pervasive study on the state of the art of VC methods. We introduce a detailed VC taxonomy and explore the different kinds of traffic information that can be extracted via each method. Subsequently, traditional and cutting edge VC systems are investigated from different aspects. Specifically, strengths and shortcomings of the existing VC methods are discussed and real-time alternatives like Vehicular Ad-hoc Networks (VANETs) are investigated to convey physical as well as kinematic characteristics of the vehicles. Finally, we review a broad range of soft computing solutions involved in VC in the context of machine learning, neural networks, miscellaneous features, models and other methods

    Vehicle-Rear: A New Dataset to Explore Feature Fusion for Vehicle Identification Using Convolutional Neural Networks

    Full text link
    This work addresses the problem of vehicle identification through non-overlapping cameras. As our main contribution, we introduce a novel dataset for vehicle identification, called Vehicle-Rear, that contains more than three hours of high-resolution videos, with accurate information about the make, model, color and year of nearly 3,000 vehicles, in addition to the position and identification of their license plates. To explore our dataset we design a two-stream CNN that simultaneously uses two of the most distinctive and persistent features available: the vehicle's appearance and its license plate. This is an attempt to tackle a major problem: false alarms caused by vehicles with similar designs or by very close license plate identifiers. In the first network stream, shape similarities are identified by a Siamese CNN that uses a pair of low-resolution vehicle patches recorded by two different cameras. In the second stream, we use a CNN for OCR to extract textual information, confidence scores, and string similarities from a pair of high-resolution license plate patches. Then, features from both streams are merged by a sequence of fully connected layers for decision. In our experiments, we compared the two-stream network against several well-known CNN architectures using single or multiple vehicle features. The architectures, trained models, and dataset are publicly available at https://github.com/icarofua/vehicle-rear

    Developing an advanced collision risk model for autonomous vehicles

    Get PDF
    Aiming at improving road safety, car manufacturers and researchers are verging upon autonomous vehicles. In recent years, collision prediction methods of autonomous vehicles have begun incorporating contextual information such as information about the traffic environment and the relative motion of other traffic participants but still fail to anticipate traffic scenarios of high complexity. During the past two decades, the problem of real-time collision prediction has also been investigated by traffic engineers. In the traffic engineering approach, a collision occurrence can potentially be predicted in real-time based on available data on traffic dynamics such as the average speed and flow of vehicles on a road segment. This thesis attempts to integrate vehicle-level collision prediction approaches for autonomous vehicles with network-level collision prediction, as studied by traffic engineers. [Continues.

    A new integrated collision risk assessment methodology for autonomous vehicles

    Get PDF
    Real-time risk assessment of autonomous driving at tactical and operational levels is extremely challenging since both contextual and circumferential factors should concurrently be considered. Recent methods have started to simultaneously treat the context of the traffic environment along with vehicle dynamics. In particular, interaction-aware motion models that take inter-vehicle dependencies into account by utilizing the Bayesian interference are employed to mutually control multiple factors. However, communications between vehicles are often assumed and the developed models are required many parameters to be tuned. Consequently, they are computationally very demanding. Even in the cases where these desiderata are fulfilled, current approaches cannot cope with a large volume of sequential data from organically changing traffic scenarios, especially in highly complex operational environments such as dense urban areas with heterogeneous road users. To overcome these limitations, this paper develops a new risk assessment methodology that integrates a network-level collision estimate with a vehicle-based risk estimate in real-time under the joint framework of interaction-aware motion models and Dynamic Bayesian Networks (DBN). Following the formulation and explanation of the required functions, machine learning classifiers were utilized for the real-time network-level collision prediction and the results were then incorporated into the integrated DBN model for predicting collision probabilities in real-time. Results indicated an enhancement of the interaction-aware model by up to 10%, when traffic conditions are deemed as collision-prone. Hence, it was concluded that a well-calibrated collision prediction classifier provides a crucial hint for better risk perception by autonomous vehicles

    Real-Time Vehicle Classification System Using a Single Magnetometer

    Get PDF
    Vehicle count and classification data are very important inputs for intelligent transportation systems (ITS). Magnetic sensor-based technology provides a very promising solution for the measurement of different traffic parameters. In this work, a novel, real-time vehicle detection and classification system is presented using a single magnetometer. The detection, feature extraction, and classification are performed online, so there is no need for external equipment to conduct the necessary computation. Data acquisition was performed in a real environment using a unit installed into the surface of the pavement. A very large number of samples were collected containing measurements of various vehicle classes, which were applied for the training and the validation of the proposed algorithm. To explore the capabilities of magnetometers, nine defined vehicle classes were applied, which is much higher than in relevant methods. The classification is performed using three-layer feedforward artificial neural networks (ANN). Only time-domain analysis was performed on the waveforms using multiple novel feature extraction approaches. The applied time-domain features require low computation and memory resources, which enables easier implementation and real-time operation. Various combinations of used sensor axes were also examined to reduce the size of the classifier and to increase efficiency. The effect of the detection length, which is a widely used feature, but also speed-dependent, on the proposed system was also investigated to explore the suitability of the applied feature set. The results show that the highest achieved classification efficiencies on unknown samples are 74.67% with, and 73.73% without applying the detection length in the feature set

    Monocular Camera Viewpoint-Invariant Vehicular Traffic Segmentation and Classification Utilizing Small Datasets

    Get PDF
    The work presented here develops a computer vision framework that is view angle independent for vehicle segmentation and classification from roadway traffic systems installed by the Virginia Department of Transportation (VDOT). An automated technique for extracting a region of interest is discussed to speed up the processing. The VDOT traffic videos are analyzed for vehicle segmentation using an improved robust low-rank matrix decomposition technique. It presents a new and effective thresholding method that improves segmentation accuracy and simultaneously speeds up the segmentation processing. Size and shape physical descriptors from morphological properties and textural features from the Histogram of Oriented Gradients (HOG) are extracted from the segmented traffic. Furthermore, a multi-class support vector machine classifier is employed to categorize different traffic vehicle types, including passenger cars, passenger trucks, motorcycles, buses, and small and large utility trucks. It handles multiple vehicle detections through an iterative k-means clustering over-segmentation process. The proposed algorithm reduced the processed data by an average of 40%. Compared to recent techniques, it showed an average improvement of 15% in segmentation accuracy, and it is 55% faster than the compared segmentation techniques on average. Moreover, a comparative analysis of 23 different deep learning architectures is presented. The resulting algorithm outperformed the compared deep learning algorithms for the quality of vehicle classification accuracy. Furthermore, the timing analysis showed that it could operate in real-time scenarios
    corecore