3,010 research outputs found

    Short-term crash risk prediction considering proactive, reactive, and driver behavior factors

    Get PDF
    Providing a safe and efficient transportation system is the primary goal of transportation engineering and planning. Highway crashes are among the most significant challenges to achieving this goal. They result in significant societal toll reflected in numerous fatalities, personal injuries, property damage, and traffic congestion. To that end, much attention has been given to predictive models of crash occurrence and severity. Most of these models are reactive: they use the data about crashes that have occurred in the past to identify the significant crash factors, crash hot-spots and crash-prone roadway locations, analyze and select the most effective countermeasures for reducing the number and severity of crashes. More recently, the advancements have been made in developing proactive crash risk models to assess short-term crash risks in near-real time. Such models could be applied as part of traffic management strategies to prevent and mitigate the crashes. The driver behavior is found to be the leading cause of highway crashes. Nevertheless, due to data unavailability, limited studies have explored and quantified the role of driver behavior in crashes. The Strategic Highway Research Program Naturalistic Driving Study (SHRP 2 NDS) offers an unprecedented opportunity to perform an in-depth analysis of the impacts of driver behavior on crashes events. The research presented in this dissertation is divided into three parts, corresponding to the research objectives. The first part investigates the application of advanced data modeling methods for proactive crash risk analysis. Several proactive models for segment level crash risk and severity assessment are developed and tested, considering the proactive data available to most transportation agencies in real time at a regional network scale. The data include roadway geometry characteristics, traffic flow characteristics, and weather condition data. The analysis methods include Random-effect Bayesian Logistics Regression, Random Forest, Gradient Boosting Machine, K-Nearest Neighbor, Gaussian Naive Bayes (GNB), and Multi-layer Feedforward Deep Neural Network (MLFDNN). The random oversampling technique is applied to deal with the problem of data imbalance associated with the injury severity analysis. The model training and testing are completed using a dataset containing records of 10,155 crashes that occurred on two interstate highways in New Jersey over a period of two years. The second part of the study analyzes the potential improvement in the prediction abilities of the proposed models by adding reactive data (such as vehicle characteristics and driver characteristics) to the analysis. Commonly, the reactive data is only available (known) after the crash occurs. In the proposed research, the crash analysis is performed by classifying crashes in multiple groupings (instead of a single group), constructed based on the age of drivers and vehicles to account for the impact of reactive data on driver injury severity outcomes. The results of the second part of the study show that while the simultaneous use of reactive and proactive data can improve the prediction performance of the models, the absolute crash probability values must be further improved for operational crash risk prediction. To this end, in the third part of the study, the Naturalistic Driving Study data is used to calibrate the crash risk models, including the driver behavior risk factors. The findings show significant improvement in crash prediction accuracy with the inclusion of driver behavior risk factors, which confirms the driver behavior to be the most critical risk factor affecting the crash likelihood and the associated injury severity

    Integrated Modeling Approach for the Transportation Disadvantaged

    Get PDF
    Transportation models have not been adequate in addressing severe long-term urban transportation problems that transportation disadvantaged groups overwhelmingly encounter, and the negative impacts of transportation on the disadvantaged have not been effectively considered in the modeling studies. Therefore this paper aims to develop a transportation modeling approach in order to understand the travel patterns of the transportation disadvantaged, and help in developing policies to solve the problems of the disadvantaged. Effectiveness of this approach is tested in a pilot study in Aydin, Turkey. After determining disadvantaged groups by a series of spatial and statistical analyses, the approach is integrated with a travel demand model. The model is run for both disadvantaged and nondisadvantaged populations to examine the differences between their travel behaviors. The findings of the pilot study reveal that almost two thirds of the population is disadvantaged, and this modeling approach could be particularly useful in disadvantage-sensitive planning studies to deploy relevant land use and transportation policies for disadvantaged groups

    Real-time Vehicle Detection, Tracking and Counting System Based on YOLOv7

    Get PDF
    The importance of real-time vehicle detection tracking and counting system based on YOLOv7 is an important tool for monitoring traffic flow on highways. Highway traffic management, planning, and prevention rely heavily on real-time traffic monitoring technologies to avoid frequent traffic snarls, moving violations, and fatal car accidents. These systems rely only on data from timedependent vehicle trajectories used to predict online traffic flow. Three crucial duties include the detection, tracking, and counting of cars on urban roads and highways as well as the calculation of statistical traffic flow statistics (such as determining the real-time vehicles flow and how many different types of vehicles travel). Important phases in these systems include object detection, tracking, categorizing, and counting. The YOLOv7 identification method is presented to address the issues of high missed detection rates of the YOLOv7 algorithm for vehicle detection on urban highways, weak perspective perception of small targets, and insufficient feature extraction. This system aims to provide real-time monitoring of vehicles, enabling insights into traffic patterns and facilitating informed decision-making. In this paper, vehicle detecting, tracking, and counting can be calculated on real-time videos based on modified YOLOv7 with high accuracy
    • …
    corecore