687 research outputs found

    Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin

    Get PDF
    Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (epsilon) at four sites in the Amazon Basin: r(exp 2) values ranged from 0.37 to 0.51 for northern flux sites and to 0.78for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics

    Towards a harmonized long‐term spaceborne record of far‐red solar induced fluorescence

    Get PDF
    Far‐red solar‐induced chlorophyll fluorescence (SIF) has been retrieved from multiple satellites with nearly continuous global coverage since 1996. Multiple official and research‐grade retrievals provide a means for cross validation across sensors and algorithms, but produces substantial variation across products due to differences in instrument characteristics and retrieval algorithm. The lack of a consistent, calibrated SIF data set hampers scientific interpretation of planetary photosynthesis. NASA's Orbiting Carbon Observatory 2 (OCO‐2) offers small sampling footprints, high data acquisition, and repeating spatially resolved targets at bioclimatically diverse locations, providing a unique benchmark for spaceborne sensors traceable to ground data. We leverage overlap between the longer running Global Ozone Monitoring Instrument version 2 (GOME‐2) SIF time series, and more recent state‐of‐the‐art OCO‐2 and TROPOspheric Monitoring Instrument (TROPOMI) data, in a first attempt to reconcile inconsistencies in the long‐term record. After screening and correcting for key instrument differences (time of day, wavelength, Sun‐sensor geometry, cloud effects, footprint area), we find that Global Ozone Monitoring Instrument version 2 and TROPOspheric Monitoring Instrument perform exceedingly well in capturing spatial, seasonal, and interannual variability across OCO‐2 targets. However, Global Ozone Monitoring Instrument version 2 retrieval methods differ by up to a factor of 2 in signal‐to‐noise and magnitude. Magnitude differences are largely attributed to retrieval window choice, with wider windows producing higher magnitudes. The assumed SIF spectral shape has negligible effect. Substantial research is needed to understand remaining sensitivities to atmospheric absorption and reflectance. We conclude that OCO‐2 and TROPOspheric Monitoring Instrument have opened up the possibility to produce a multidecadal SIF record with well‐characterized uncertainty and error quantification for overlapping instruments, enabling back‐calibration of previous instruments and production of a consistent, research‐grade, harmonized time series

    Spatio-Temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll

    Get PDF
    Light-use efficiency (LUE), which quantifies the plants' efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production estimation. Here we use satellite-based solar-induced chlorophyll fluorescence as a proxy for photosynthetically active radiation absorbed by chlorophyll (APAR ) and derive an estimation of the fraction of APAR (fPAR ) from four remotely sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (ε ), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPAR , suggesting the corresponding (ε ) to have less seasonal variation. This spatio-temporal convergence of LUE derived from fPAR can be used to build simple but robust gross primary production models and to better constrain process-based models. chl chl chl max chl max chl chl ch

    New Methods for Measurements of Photosynthesis from Space

    Get PDF
    Our ability to close the Earth's carbon budget and predict feedbacks in a warming climate depends critically on knowing where, when, and how carbon dioxide (CO2) is exchanged between the land and atmosphere. In particular, determining the rate of carbon fixation by the Earth's biosphere (commonly referred to as gross primary productivity, or GPP) and the dependence of this productivity on climate is a central goal. Historically, GPP has been inferred from spectral imagery of the land and ocean. Assessment of GPP from the color of the land and ocean requires, however, additional knowledge of the types of plants in the scene, their regulatory mechanisms, and climate variables such as soil moisture—just the independent variables of interest! Sunlight absorbed by chlorophyll in photosynthetic organisms is mostly used to drive photosynthesis, but some can also be dissipated as heat or re‐radiated at longer wavelengths (660–800 nm). This near‐infrared light re‐emitted from illuminated plants is termed solarinduced fluorescence (SIF), and it has been found to strongly correlate with GPP. To advance our understanding of SIF and its relation to GPP and environmental stress at the planetary scale, the Keck Institute for Space Studies (KISS) convened a workshop—held in Pasadena, California, in August 2012—to focus on a newly developed capacity to monitor chlorophyll fluorescence from terrestrial vegetation by satellite. This revolutionary approach for retrieving global observations of SIF promises to provide direct and spatially resolved information on GPP, an ideal bottom‐up complement to the atmospheric net CO2 exchange inversions. Workshop participants leveraged our efforts on previous studies and workshops related to the European Space Agency’s FLuorescence EXplorer (FLEX) mission concept, which had already targeted SIF for a possible satellite mission and had developed a vibrant research community with many important publications. These studies, mostly focused on landscape, canopy, and leaf‐level interpretation, provided the ground‐work for the workshop, which focused on the global carbon cycle and synergies with atmospheric net flux inversions. Workshop participants included key members of several communities: plant physiologists with experience using active fluorescence methods to quantify photosynthesis; ecologists and radiative transfer experts who are studying the challenge of scaling from the leaf to regional scales; atmospheric scientists with experience retrieving photometric information from space‐borne spectrometers; and carbon cycle experts who are integrating new observations into models that describe the exchange of carbon between the atmosphere, land and ocean. Together, the participants examined the link between “passive” fluorescence observed from orbiting spacecraft and the underlying photochemistry, plant physiology and biogeochemistry of the land and ocean. This report details the opportunity for forging a deep connection between scientists doing basic research in photosynthetic mechanisms and the more applied community doing research on the Earth System. Too often these connections have gotten lost in empiricism associated with the coarse scale of global models. Chlorophyll fluorescence has been a major tool for basic research in photosynthesis for nearly a century. SIF observations from space, although sensing a large footprint, probe molecular events occurring in the leaves below. This offers an opportunity for direct mechanistic insight that is unparalleled for studies of biology in the Earth System. A major focus of the workshop was to review the basic mechanisms that underlie this phenomenon, and to explore modeling tools that have been developed to link the biophysical and biochemical knowledge of photosynthesis with the observable—in this case, the radiance of SIF—seen by the satellite. Discussions led to the identification of areas where knowledge is still lacking. For example, the inability to do controlled illumination observations from space limits the ability to fully constrain the variables that link fluorescence and photosynthesis. Another focus of the workshop explored a “top‐down” view of the SIF signal from space. Early studies clearly identified a strong correlation between the strength of this signal and our best estimate of the rate of photosynthesis (GPP) over the globe. New studies show that this observation provides improvements over conventional reflectance‐based remote sensing in detecting seasonal and environmental (particularly drought related) modulation of photosynthesis. Apparently SIF responds much more quickly and with greater dynamic range than typical greenness indices when GPP is perturbed. However, discussions at the workshop also identified areas where top‐down analysis seemed to be “out in front” of mechanistic studies. For example, changes in SIF based on changes in canopy light interception and the light use efficiency of the canopy, both of which occur in response to drought, are assumed equivalent in the top‐down analysis, but the mechanistic justification for this is still lacking from the bottom‐up side. Workshop participants considered implications of these mechanistic and empirical insights for large‐scale models of the carbon cycle and biogeochemistry, and also made progress toward incorporating SIF as a simulated output in land surface models used in global and regional‐scale analysis of the carbon cycle. Comparison of remotely sensed SIF with modelsimulated SIF may open new possibilities for model evaluation and data assimilation, perhaps leading to better modeling tools for analysis of the other retrieval from GOSAT satellite, atmospheric CO2 concentration. Participants also identified another application for SIF: a linkage to the physical climate system arising from the ability to better identify regional development of plant water stress. Decreases in transpiration over large areas of a continent are implicated in the development and “locking‐in” of drought conditions. These discussions also identified areas where current land surface models need to be improved in order to enable this research. Specifically, the radiation transport treatments need dramatic overhauls to correctly simulate SIF. Finally, workshop participants explored approaches for retrieval of SIF from satellite and ground‐based sensors. The difficulty of resolving SIF from the overwhelming flux of reflected sunlight in the spectral region where fluorescence occurs was once a major impediment to making this measurement. Placement of very high spectral resolution spectrometers on GOSAT (and other greenhouse gas–sensing satellites) has enabled retrievals based on infilling of solar Fraunhofer lines, enabling accurate fluorescence measurements even in the presence of moderately thick clouds. Perhaps the most interesting challenge here is that there is no readily portable ground‐based instrumentation that even approaches the capability of GOSAT and other planned greenhouse gas satellites. This strongly limits scientists’ ability to conduct ground‐based studies to characterize the footprint of the GOSAT measurement and to conduct studies of radiation transport needed to interpret SIF measurement. The workshop results represent a snapshot of the state of knowledge in this area. New research activities have sprung from the deliberations during the workshop, with publications to follow. The introduction of this new measurement technology to a wide slice of the community of Earth System Scientists will help them understand how this new technology could help solve problems in their research, address concerns about the interpretation, identify future research needs, and elicit support of the wider community for research needed to support this observation. Somewhat analogous to the original discovery that vegetation indices could be derived from satellite measurements originally intended to detect clouds, the GOSAT observations are a rare case in which a (fortuitous) global satellite dataset becomes available before the research community had a consolidated understanding on how (beyond an empirical correlation) it could be applied to understanding the underlying processes. Vegetation indices have since changed the way we see the global biosphere, and the workshop participants envision that fluorescence can perform the next indispensable step by complementing these measurements with independent estimates that are more indicative of actual (as opposed to potential) photosynthesis. Apart from the potential FLEX mission, no dedicated satellite missions are currently planned. OCO‐2 and ‐3 will provide much more data than GOSAT, but will still not allow for regional studies due to the lack of mapping capabilities. Geostationary observations may even prove most useful, as they could track fluorescence over the course of the day and clearly identify stress‐related down‐regulation of photosynthesis. Retrieval of fluorescence on the global scale should be recognized as a valuable tool; it can bring the same quantum leap in our understanding of the global carbon cycle as vegetation indices once did

    QUANTIFYING GRASSLAND NON-PHOTOSYNTHETIC VEGETATION BIOMASS USING REMOTE SENSING DATA

    Get PDF
    Non-photosynthetic vegetation (NPV) refers to vegetation that cannot perform a photosynthetic function. NPV, including standing dead vegetation and surface plant litter, plays a vital role in maintaining ecosystem function through controlling carbon, water and nutrient uptake as well as natural fire frequency and intensity in diverse ecosystems such as forest, savannah, wetland, cropland, and grassland. Due to its ecological importance, NPV has been selected as an indicator of grassland ecosystem health by the Alberta Public Lands Administration in Canada. The ecological importance of NPV has driven considerable research on quantifying NPV biomass with remote sensing approaches in various ecosystems. Although remote images, especially hyperspectral images, have demonstrated potential for use in NPV estimation, there has not been a way to quantify NPV biomass in semiarid grasslands where NPV biomass is affected by green vegetation (PV), bare soil and biological soil crust (BSC). The purpose of this research is to find a solution to quantitatively estimate NPV biomass with remote sensing approaches in semiarid mixed grasslands. Research was conducted in Grasslands National Park (GNP), a parcel of semiarid mixed prairie grassland in southern Saskatchewan, Canada. Multispectral images, including newly operational Landsat 8 Operational Land Imager (OLI) and Sentinel-2A Multi-spectral Instrument (MSIs) images and fine Quad-pol Radarsat-2 images were used for estimating NPV biomass in early, middle, and peak growing seasons via a simple linear regression approach. The results indicate that multispectral Landsat 8 OLI and Sentinel-2A MSIs have potential to quantify NPV biomass in peak and early senescence growing seasons. Radarsat-2 can also provide a solution for NPV biomass estimation. However, the performance of Radarsat-2 images is greatly affected by incidence angle of the image acquisition. This research filled a critical gap in applying remote sensing approaches to quantify NPV biomass in grassland ecosystems. NPV biomass estimates and approaches for estimating NPV biomass will contribute to grassland ecosystem health assessment (EHA) and natural resource (i.e. land, soil, water, plant, and animal) management

    Improving estimation of gross primary productivity of terrestrial ecosystems

    Get PDF
    The MOderate Resolution Imaging Spectroradiometer (MODIS) provides an unprecedented opportunity to monitor and quantify seasonal changes of vegetation and phenology. MODIS has the potential to improve the estimation, which is based on the algorithms for the NOAA Advanced Very High Resolution Radiometer (AVHRR), of biophysical/biochemical variables of vegetation. My doctoral study improves estimation of gross primary productivity (GPP) through two aspects: first, my study improved the detection of vegetation phenology by distinguishing MODIS contaminated observations and contamination-free observations, and secondly, I inverted the fraction of absorbed photosynthetically active radiation (PAR) by chlorophyll using radiative transfer models and daily MODIS data. My dissertation has five aspects: (1) to develop a procedure to distinguish atmospherically contaminated observations, snow contaminated observations and contamination-free observations; (2) to monitor vegetation phenology using reflectance of the seven MODIS spectral bands for land and relative vegetation indices; (3) to clarify the concepts of fractions of PAR absorbed by canopy, leaf and chlorophyll; (4) to explore the potential of estimating the fractions of PAR absorbed at different scales; and (5) to check if vegetation seasonal MODIS spectral variations during plant growing season are only due to vegetation\u27s anisotropic nature. A procedure to extract contamination-free daily MODIS observations is proposed and developed. It has been employed for the Harvard Forest site, the Howland Forest site, the Walker Branch Watershed Forest site, the km67 Forest site in tropic, a soybean site in Nebraska, the Xilingol grassland site in China, the Bartlett Experimental Forest site, and two broadleaf deciduous forest sites in Missouri. The extracted MODIS signals (reflectance and vegetation indices) provide rich information for interpretation. The richness of information from the results goes beyond the widely used normalized difference vegetation index (NDVI) and leaf area index (LAI). The more precise phenology information can be used for seasonal GPP estimation. The concepts of fractions of PAR absorbed by canopy, leaf and chlorophyll are described. I extracted fraction of PAR absorbed by chlorophyll for the Harvard Forest site, the Bartlett Experimental Forest site and the two deciduous broadleaf forest sites in Missouri using a coupled canopy-leaf radiative transfer model and daily MODIS data. Metropolis algorithm is used to invert the variables in the radiative transfer model. It provides posterior distributions for individual variables. Some of the inverted variables have been partly evaluated though validation for all variables is extremely expensive. Using the values of inverted variables of the two forest sites in Missouri, I calculated reflectance for the seven MODIS spectral ranges with real MODIS viewing geometries through whole growing season. I found that there should be other factors, except vegetation\u27s anisotropic nature, due to seasonal MODIS spectral variations of the forests during the plant growing season. My study suggests that in addition to measurements of canopy-level variables (e.g., LAI), field measurements of leaf-level variables (e.g., chlorophyll, other pigments, leaf dry matter, and leaf water content) will be useful for both remote sensing and ecological research

    HIRIS (High-Resolution Imaging Spectrometer: Science opportunities for the 1990s. Earth observing system. Volume 2C: Instrument panel report

    Get PDF
    The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements

    How Universal is the Relationship Between Remotely Sensed Vegetation Indices and Crop Leaf Area Index? A Global Assessment

    Get PDF
    Leaf Area Index (LAI) is a key variable that bridges remote sensing observations to the quantification of agroecosystem processes. In this study, we assessed the universality of the relationships between crop LAI and remotely sensed Vegetation Indices (VIs). We first compiled a global dataset of 1459 in situ quality-controlled crop LAI measurements and collected Landsat satellite images to derive five different VIs including Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), two versions of the Enhanced Vegetation Index (EVI and EVI2), and Green Chlorophyll Index (CI(sub Green)). Based on this dataset, we developed global LAI-VI relationships for each crop type and VI using symbolic regression and Theil-Sen (TS) robust estimator. Results suggest that the global LAI-VI relationships are statistically significant, crop-specific, and mostly non-linear. These relationships explain more than half of the total variance in ground LAI observations (R2 greater than 0.5), and provide LAI estimates with RMSE below 1.2 m2/m2. Among the five VIs, EVI/EVI2 are the most effective, and the crop-specific LAI-EVI and LAI-EVI2 relationships constructed by TS, are robust when tested by three independent validation datasets of varied spatial scales. While the heterogeneity of agricultural landscapes leads to a diverse set of local LAI-VI relationships, the relationships provided here represent global universality on an average basis, allowing the generation of large-scale spatial-explicit LAI maps. This study contributes to the operationalization of large-area crop modeling and, by extension, has relevance to both fundamental and applied agroecosystem research
    corecore