42,665 research outputs found

    No Consistent Evidence for Advancing or Delaying Trends in Spring Phenology on the Tibetan Plateau

    Get PDF
    Vegetation phenology is a sensitive indicator of climate change and has significant effects on the exchange of carbon, water, and energy between the terrestrial biosphere and the atmosphere. The Tibetan Plateau, the Earth\u27s “third pole,” is a unique region for studying the long‐term trends in vegetation phenology in response to climate change because of the sensitivity of its alpine ecosystems to climate and its low‐level human disturbance. There has been a debate whether the trends in spring phenology over the Tibetan Plateau have been continuously advancing over the last two to three decades. In this study, we examine the trends in the start of growing season (SOS) for alpine meadow and steppe using the Global Inventory Modeling and Mapping Studies (GIMMS)3g normalized difference vegetation index (NDVI) data set (1982–2014), the GIMMS NDVI data set (1982–2006), the Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI data set (2001–2014), the Satellite Pour l\u27Observation de la Terre Vegetation (SPOT‐VEG) NDVI data set (1999–2013), and the Sea‐viewing Wide Field‐of‐View Sensor (SeaWiFS) NDVI data set (1998–2007). Both logistic and polynomial fitting methods are used to retrieve the SOS dates from the NDVI data sets. Our results show that the trends in spring phenology over the Tibetan Plateau depend on both the NDVI data set used and the method for retrieving the SOS date. There are large discrepancies in the SOS trends among the different NDVI data sets and between the two different retrieval methods. There is no consistent evidence that spring phenology (“green‐up” dates) has been advancing or delaying over the Tibetan Plateau during the last two to three decades. Ground‐based budburst data also indicate no consistent trends in spring phenology. The responses of SOS to environmental factors (air temperature, precipitation, soil temperature, and snow depth) also vary among NDVI data sets and phenology retrieval methods. The increases in winter and spring temperature had offsetting effects on spring phenology

    Polynomial trends of vegetation phenology in Sahelian to equatorial Africa using remotely sensed time series from 1983 to 2005

    Get PDF
    Popular science Our understanding of global warming can be achieved in different ways. One way is to study the phenological parameters of vegetation. Phenology or seasonality of vegetation can be identified from several parameters such as: the start of the growing season (SOS), end of the growing season (EOS), amplitude of the season (AMP), and length of the growing season (LOS). Changes of these parameters represent the cyclic changes of vegetation. Nowadays, imagery satellite data are reliable and widely-used sources to study the vegetation changes. Phenology parameters are derived from time series of vegetation indices (VI) that can be computed from satellite imagery. In this thesis, long-term dataset of GIMMS NDVI from 1983 to 2005 was used to extract and analyze vegetation phenology over Sahelian to equatorial areas. The TIMESAT software package was also used as an automated method to extract the parameters. Recent researches have shown the changes via analyzing the linear trends of the vegetation indices or lately through studying the linear trend of phenological parameters. Since changes of vegetation are not always simply linear, the overall aim of this thesis was to study vegetation changes through analysis of non-linear trends and more complex mathematical functions of phenology parameters, and via finding the relationship between the phenology parameters and soil moisture. Driving forces behind changes in phenology parameters including land cover, soil texture and rainfall were also taken in to consideration. The results illustrated that non-linear trends can detect notable proportions of vegetation changes in the study area. Not only significant portions of areas with linear trends could be represented using non-linear trends, but also these trends increased the precision of phenology change detection. Regarding the climate driver forces results showed that the vegetation phenology changes followed soil moisture variations. However the trends of vegetation changes has not especially followed land cover, soil texture and geographic characteristics although in some limited cases these driver forces are related to the changes.Global warming has both short and long term effects on seasonal phenological cycles of vegetation. Phenology parameters of vegetation such as start, end, length and amplitude of season can describe life cycle events of vegetation. In this thesis, long-term dataset of GIMMS NDVI time series from 1983 to 2005 was used to extract and analyze vegetation phenology over Sahelian to equatorial areas and TIMESAT software package was used as an automated method to extract the parameters. The overall aim of this thesis was to study vegetation changes through analysis of polynomial trends of phenology parameters. Phenology parameters were analyzed to detect hidden changes in vegetation dynamics. Through comparing polynomial trends of vegetation parameters and soil moisture, the relationship between the phenology parameters and soil moisture was detected and the role of climate driver forces (including land cover, soil texture and rainfall) behind the changes in phenology parameters were investigated. The results illustrated that polynomial trends can detect notable proportions of vegetation changes in the Sahel using remotely sensed data. Significant portions of areas with linear trends could be represented through quadratic and cubic trends, and these trends increased the precision of phenology change detection. Furthermore, in some areas vegetation changes were not detected neither through linear regressions nor polynomial trends. In such areas, polynomial hidden trends could be applied for detecting the fluctuations of vegetation parameters. In summation, applying polynomial trend analysis to time-series of satellite data is a powerful tool for investigating trends and variations in vegetation in semi-arid to sub-humid regions, like the Sahel. Regarding the climate driver forces, results showed that the vegetation phenology changes followed soil moisture variations, and in most occurrences, moderate correlations were found between SOS, EOS, and soil moisture. The trends of vegetation changes did not spatially follow land cover and soil types of the study area. However, in some limited cases, land cover, soil texture and geographic characteristics such as elevation were related to the changes

    SATELLITE MICROWAVE MEASUREMENT OF LAND SURFACE PHENOLOGY: CLARIFYING VEGETATION PHENOLOGY RESPONSE TO CLIMATIC DRIVERS AND EXTREME EVENTS

    Get PDF
    The seasonality of terrestrial vegetation controls feedbacks to the climate system including land-atmosphere water, energy and carbon (CO2) exchanges with cascading effects on regional-to-global weather and circulation patterns. Proper characterization of vegetation phenology is necessary to understand and quantify changes in the earthÆs ecosystems and biogeochemical cycles and is a key component in tracking ecological species response to climate change. The response of both functional and structural vegetation phenology to climatic drivers on a global scale is still poorly understood however, which has hindered the development of robust vegetation phenology models. In this dissertation I use satellite microwave vegetation optical depth (VOD) in conjunction with an array of satellite measures, Global Positioning System (GPS) reflectometry, field observations and flux tower data to 1) clarify vegetation phenology response to water, temperature and solar irradiance constraints, 2) demonstrate the asynchrony between changes in vegetation water content and biomass and changes in greenness and leaf area in relation to land cover type and climate constraints, 3) provide enhanced assessment of seasonal recovery of vegetation biomass following wildfire and 4) present a method to more accurately model tropical vegetation phenology. This research will establish VOD as a useful and informative parameter for regional-to-global vegetation phenology modeling, more accurately define the drivers of both structural and functional vegetation phenology, and help minimize errors in phenology simulations within earth system models. This dissertation also includes the development of Gross Primary Productivity (GPP) and Net Primary Productivity (NPP) vegetation health climate indicators as part of a NASA funded project entitled Development and Testing of Potential Indicators for the National Climate Assessment; Translating EOS datasets into National Ecosystem Biophysical Indicators

    Carbon Flux Phenology from the Sky: Evaluation for Maize and Soybean

    Get PDF
    Carbon flux phenology is widely used to understand carbon flux dynamics and surface exchange processes. Vegetation phenology has been widely evaluated by remote sensors; however, very few studies have evaluated the use of vegetation phenology for identifying carbon flux phenology. Currently available techniques to derive net ecosystem exchange (NEE) from a satellite image use a single generic modeling subgroup for agricultural crops. But, carbon flux phenological processes vary highly with crop types and land management practices; this paper reexamines this assumption. Presented here are an evaluation of ground-truth remotely sensed vegetation indices with in situ NEE measurements and an identification of vegetation indices for estimating carbon flux phenology metrics by crop type. Results show that the performance of different vegetation indices as an indicator of phenology varies with crop type, particularly when identifying the start of a season and the peak of a season. Maize fields require vegetation indices that make use of the near-infrared and red reflectance bands, while soybean fields require those making use of the shortwave infrared (IR) and near-IR bands. In summary, the study identifies how to best utilize remote sensing technology as a crop-specific measurement tool

    A Review of Vegetation Phenological Metrics Extraction Using Time-Series, Multispectral Satellite Data

    Get PDF
    Vegetation dynamics and phenology play an important role in inter-annual vegetation changes in terrestrial ecosystems and are key indicators of climate-vegetation interactions, land use/land cover changes, and variation in year-to-year vegetation productivity. Satellite remote sensing data have been widely used for vegetation phenology monitoring over large geographic domains using various types of observations and methods over the past several decades. The goal of this paper is to present a detailed review of existing methods for phenology detection and emerging new techniques based on the analysis of time-series, multispectral remote sensing imagery. This paper summarizes the objective and applications of detecting general vegetation phenology stages (e.g., green onset, time or peak greenness, and growing season length) often termed “land surface phenology,” as well as more advanced methods that estimate species-specific phenological stages (e.g., silking stage of maize). Common data-processing methods, such as data smoothing, applied to prepare the time-series remote sensing observations to be applied to phenological detection methods are presented. Specific land surface phenology detection methods as well as species-specific phenology detection methods based on multispectral satellite data are then discussed. The impact of different error sources in the data on remote-sensing based phenology detection are also discussed in detail, as well as ways to reduce these uncertainties and errors. Joint analysis of multiscale observations ranging from satellite to more recent ground-based sensors is helpful for us to understand satellite-based phenology detection mechanism and extent phenology detection to regional scale in the future. Finally, emerging opportunities to further advance remote sensing of phenology is presented that includes observations from Cubesats, near-surface observations such as PhenoCams, and image data fusion techniques to improve the spatial resolution of time-series image data sets needed for phenological characterization

    Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing

    Get PDF
    Phenology is a valuable diagnostic of ecosystem health, and has applications to environmental monitoring and management. Here, we conduct an intercomparison analysis using phenological transition dates derived from near-surface PhenoCam imagery and MODIS satellite remote sensing. We used approximately 600 site-years of data, from 128 camera sites covering a wide range of vegetation types and climate zones. During both “greenness rising” and “greenness falling” transition phases, we found generally good agreement between PhenoCam and MODIS transition dates for agricultural, deciduous forest, and grassland sites, provided that the vegetation in the camera field of view was representative of the broader landscape. The correlation between PhenoCam and MODIS transition dates was poor for evergreen forest sites. We discuss potential reasons (including sub-pixel spatial heterogeneity, flexibility of the transition date extraction method, vegetation index sensitivity in evergreen systems, and PhenoCam geolocation uncertainty) for varying agreement between time series of vegetation indices derived from PhenoCam and MODIS imagery. This analysis increases our confidence in the ability of satellite remote sensing to accurately characterize seasonal dynamics in a range of ecosystems, and provides a basis for interpreting those dynamics in the context of tangible phenological changes occurring on the ground

    Asynchronous vegetation phenology enhances winter body condition of a large mobile herbivore

    Get PDF
    Understanding how spatial and temporal heterogeneity influence ecological processes forms a central challenge in ecology. Individual responses to heterogeneity shape population dynamics, therefore understanding these responses is central to sustainable population management. Emerging evidence has shown that herbivores track heterogeneity in nutritional quality of vegetation by responding to phenological differences in plants. We quantified the benefits mule deer (Odocoileus hemionus) accrue from accessing habitats with asynchronous plant phenology in northwest Colorado over 3 years. Our analysis examined both the direct physiological and indirect environmental effects of weather and vegetation phenology on mule deer winter body condition. We identified several important effects of annual weather patterns and topographical variables on vegetation phenology in the home ranges of mule deer. Crucially, temporal patterns of vegetation phenology were linked with differences in body condition, with deer tending to show poorer body condition in areas with less asynchronous vegetation green-up and later vegetation onset. The direct physiological effect of previous winter precipitation on mule deer body condition was much less important than the indirect effect mediated by vegetation phenology. Additionally, the influence of vegetation phenology on body fat was much stronger than that of overall vegetation productivity. In summary, changing annual weather patterns, particularly in relation to seasonal precipitation, have the potential to alter body condition of this important ungulate species during the critical winter period. This finding highlights the importance of maintaining large contiguous areas of spatially and temporally variable resources to allow animals to compensate behaviourally for changing climate-driven resource patterns

    Modelling fire occurrence at regional scale. Does vegetation phenology matter?

    Get PDF
    Through its influence on biomass production, climate controls fuel availability affecting at the same time fuel moisture and flammability, which are the main determinants for fire ignition and propagation. Knowing the role of fuel phenology on fire ignition patterns is hence a key issue for fire prevention, detection, and development of mitigation strategies. The objective of this study is to quantify, at coarse scale, the role of the vegetation seasonal dynamics on fire ignition patterns of the National Park of Cilento, Vallo di Diano and Alburni (southern Italy) during 2000-2013. We applied a habitat suitability model to compare the multitemporal NDVI profiles at the locations of fire occurrence (the used habitat) with the NDVI profiles of the entire study area (the available habitat). Results demonstrated that, from May to October, wildfires occur preferentially at sites where the remotely-sensed NDVI observations have on average lower values than the available habitat. On the other hand, in the period November-April, wildfires tend to occur at sites where the corresponding NDVI observations have higher values than the available habitat. From a practical viewpoint, the proposed method can be implemented using many different ecogeographical variables simultaneously, thus integrating remotely sensed imagery with socioeconomic data, land cover, physiography or any landscape features that are thought to influence fire occurrence in the study area

    Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow.

    Get PDF
    Since 2000, the phenology has advanced in some years and at some locations on the Qinghai-Tibetan Plateau, whereas it has been delayed in others. To understand the variations in spring vegetation growth in response to climate, we conducted both regional and experimental studies on the central Qinghai-Tibetan Plateau. We used the normalized difference vegetation index to identify correlations between climate and phenological greening, and found that greening correlated negatively with winter-spring time precipitation, but not with temperature. We used open top chambers to induce warming in an alpine meadow ecosystem from 2012 to 2014. Our results showed that in the early growing season, plant growth (represented by the net ecosystem CO2 exchange, NEE) was lower in the warmed plots than in the control plots. Late-season plant growth increased with warming relative to that under control conditions. These data suggest that the response of plant growth to warming is complex and non-intuitive in this system. Our results are consistent with the hypothesis that moisture limitation increases in early spring as temperature increases. The effects of moisture limitation on plant growth with increasing temperatures will have important ramifications for grazers in this system
    • 

    corecore