7,792 research outputs found

    PReFacTO: Preference Relations Based Factor Model with Topic Awareness and Offset

    Get PDF
    Recommendation systems create personalized list of items that might interest the user by analyzing the user’s history of past purchases and/or consumption. Generally only a small subset of the items are assessed by each user, and from the large subset of unseen items, the systems need to produce an accurate list of recommendations. For rating based systems, most of the traditional methods for recommendation focus on the absolute ratings provided by the users to the items. In this work, we extend the traditional Matrix Factorization approach for recommendation and propose pairwise relation based factor modeling. We propose the method based on the pairwise preferences between the items to capture the relative tendency of user selecting one item over the other. While modeling the items in the system, the use of pairwise preferences allow information flow between the items through the preference relations as an additional information. Item feedbacks are available in the form of reviews apart from the rating information. The reviews have textual information that can be really helpful to represent the item’s latent feature vector appropriately. We perform topic modeling of the item reviews and use the topic vectors to guide the joint factor modeling of the users and items and learn their final representations. The proposed methods shows promising results in comparison to the state-of-the-art methods in our experiments. v

    Clustering and Inference From Pairwise Comparisons

    Full text link
    Given a set of pairwise comparisons, the classical ranking problem computes a single ranking that best represents the preferences of all users. In this paper, we study the problem of inferring individual preferences, arising in the context of making personalized recommendations. In particular, we assume that there are nn users of rr types; users of the same type provide similar pairwise comparisons for mm items according to the Bradley-Terry model. We propose an efficient algorithm that accurately estimates the individual preferences for almost all users, if there are rmax{m,n}logmlog2nr \max \{m, n\}\log m \log^2 n pairwise comparisons per type, which is near optimal in sample complexity when rr only grows logarithmically with mm or nn. Our algorithm has three steps: first, for each user, compute the \emph{net-win} vector which is a projection of its (m2)\binom{m}{2}-dimensional vector of pairwise comparisons onto an mm-dimensional linear subspace; second, cluster the users based on the net-win vectors; third, estimate a single preference for each cluster separately. The net-win vectors are much less noisy than the high dimensional vectors of pairwise comparisons and clustering is more accurate after the projection as confirmed by numerical experiments. Moreover, we show that, when a cluster is only approximately correct, the maximum likelihood estimation for the Bradley-Terry model is still close to the true preference.Comment: Corrected typos in the abstrac

    PReFacTO: Preference Relations Based Factor Model with Topic Awareness and Offset

    Get PDF
    Recommendation systems create personalized list of items that might interest the user by analyzing the user’s history of past purchases and/or consumption. For rating based systems, most of the traditional methods for recommendation focus on the absolute ratings provided by the users to the items. In this paper, we extend the traditional Matrix Factorization approach for recommendation and propose pairwise relation based factor modeling. While modeling the items in the system, the use of pairwise preferences allow information flow between the items through the preference relations as an additional information. Item feedbacks are available in the form of reviews apart from the rating information. The reviews have textual information that can be really helpful to represent the item’s latent feature vector appropriately. We perform topic modeling of the item reviews and use the topic vectors to guide the joint factor modeling of the users and items and learn their final representations. The proposed method shows promising results in comparison to the state-of-the-art methods in our experiments

    {ELIXIR}: {L}earning from User Feedback on Explanations to Improve Recommender Models

    Get PDF
    System-provided explanations for recommendations are an important component towards transparent and trustworthy AI. In state-of-the-art research, this is a one-way signal, though, to improve user acceptance. In this paper, we turn the role of explanations around and investigate how they can contribute to enhancing the quality of generated recommendations themselves. We devise a human-in-the-loop framework, called ELIXIR, where user feedback on explanations is leveraged for pairwise learning of user preferences. ELIXIR leverages feedback on pairs of recommendations and explanations to learn user-specific latent preference vectors, overcoming sparseness by label propagation with item-similarity-based neighborhoods. Our framework is instantiated using generalized graph recommendation via Random Walk with Restart. Insightful experiments with a real user study show significant improvements in movie and book recommendations over item-level feedback

    Neural Collaborative Ranking

    Full text link
    Recommender systems are aimed at generating a personalized ranked list of items that an end user might be interested in. With the unprecedented success of deep learning in computer vision and speech recognition, recently it has been a hot topic to bridge the gap between recommender systems and deep neural network. And deep learning methods have been shown to achieve state-of-the-art on many recommendation tasks. For example, a recent model, NeuMF, first projects users and items into some shared low-dimensional latent feature space, and then employs neural nets to model the interaction between the user and item latent features to obtain state-of-the-art performance on the recommendation tasks. NeuMF assumes that the non-interacted items are inherent negative and uses negative sampling to relax this assumption. In this paper, we examine an alternative approach which does not assume that the non-interacted items are necessarily negative, just that they are less preferred than interacted items. Specifically, we develop a new classification strategy based on the widely used pairwise ranking assumption. We combine our classification strategy with the recently proposed neural collaborative filtering framework, and propose a general collaborative ranking framework called Neural Network based Collaborative Ranking (NCR). We resort to a neural network architecture to model a user's pairwise preference between items, with the belief that neural network will effectively capture the latent structure of latent factors. The experimental results on two real-world datasets show the superior performance of our models in comparison with several state-of-the-art approaches.Comment: Proceedings of the 2018 ACM on Conference on Information and Knowledge Managemen
    corecore