104 research outputs found

    Parallel structurally-symmetric sparse matrix-vector products on multi-core processors

    Full text link
    We consider the problem of developing an efficient multi-threaded implementation of the matrix-vector multiplication algorithm for sparse matrices with structural symmetry. Matrices are stored using the compressed sparse row-column format (CSRC), designed for profiting from the symmetric non-zero pattern observed in global finite element matrices. Unlike classical compressed storage formats, performing the sparse matrix-vector product using the CSRC requires thread-safe access to the destination vector. To avoid race conditions, we have implemented two partitioning strategies. In the first one, each thread allocates an array for storing its contributions, which are later combined in an accumulation step. We analyze how to perform this accumulation in four different ways. The second strategy employs a coloring algorithm for grouping rows that can be concurrently processed by threads. Our results indicate that, although incurring an increase in the working set size, the former approach leads to the best performance improvements for most matrices.Comment: 17 pages, 17 figures, reviewed related work section, fixed typo

    MPI+X: task-based parallelization and dynamic load balance of finite element assembly

    Get PDF
    The main computing tasks of a finite element code(FE) for solving partial differential equations (PDE's) are the algebraic system assembly and the iterative solver. This work focuses on the first task, in the context of a hybrid MPI+X paradigm. Although we will describe algorithms in the FE context, a similar strategy can be straightforwardly applied to other discretization methods, like the finite volume method. The matrix assembly consists of a loop over the elements of the MPI partition to compute element matrices and right-hand sides and their assemblies in the local system to each MPI partition. In a MPI+X hybrid parallelism context, X has consisted traditionally of loop parallelism using OpenMP. Several strategies have been proposed in the literature to implement this loop parallelism, like coloring or substructuring techniques to circumvent the race condition that appears when assembling the element system into the local system. The main drawback of the first technique is the decrease of the IPC due to bad spatial locality. The second technique avoids this issue but requires extensive changes in the implementation, which can be cumbersome when several element loops should be treated. We propose an alternative, based on the task parallelism of the element loop using some extensions to the OpenMP programming model. The taskification of the assembly solves both aforementioned problems. In addition, dynamic load balance will be applied using the DLB library, especially efficient in the presence of hybrid meshes, where the relative costs of the different elements is impossible to estimate a priori. This paper presents the proposed methodology, its implementation and its validation through the solution of large computational mechanics problems up to 16k cores

    Performance Characterization of Multi-threaded Graph Processing Applications on Intel Many-Integrated-Core Architecture

    Full text link
    Intel Xeon Phi many-integrated-core (MIC) architectures usher in a new era of terascale integration. Among emerging killer applications, parallel graph processing has been a critical technique to analyze connected data. In this paper, we empirically evaluate various computing platforms including an Intel Xeon E5 CPU, a Nvidia Geforce GTX1070 GPU and an Xeon Phi 7210 processor codenamed Knights Landing (KNL) in the domain of parallel graph processing. We show that the KNL gains encouraging performance when processing graphs, so that it can become a promising solution to accelerating multi-threaded graph applications. We further characterize the impact of KNL architectural enhancements on the performance of a state-of-the art graph framework.We have four key observations: 1 Different graph applications require distinctive numbers of threads to reach the peak performance. For the same application, various datasets need even different numbers of threads to achieve the best performance. 2 Only a few graph applications benefit from the high bandwidth MCDRAM, while others favor the low latency DDR4 DRAM. 3 Vector processing units executing AVX512 SIMD instructions on KNLs are underutilized when running the state-of-the-art graph framework. 4 The sub-NUMA cache clustering mode offering the lowest local memory access latency hurts the performance of graph benchmarks that are lack of NUMA awareness. At last, We suggest future works including system auto-tuning tools and graph framework optimizations to fully exploit the potential of KNL for parallel graph processing.Comment: published as L. Jiang, L. Chen and J. Qiu, "Performance Characterization of Multi-threaded Graph Processing Applications on Many-Integrated-Core Architecture," 2018 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Belfast, United Kingdom, 2018, pp. 199-20

    A Recursive Algebraic Coloring Technique for Hardware-Efficient Symmetric Sparse Matrix-Vector Multiplication

    Get PDF
    The symmetric sparse matrix-vector multiplication (SymmSpMV) is an important building block for many numerical linear algebra kernel operations or graph traversal applications. Parallelizing SymmSpMV on today's multicore platforms with up to 100 cores is difficult due to the need to manage conflicting updates on the result vector. Coloring approaches can be used to solve this problem without data duplication, but existing coloring algorithms do not take load balancing and deep memory hierarchies into account, hampering scalability and full-chip performance. In this work, we propose the recursive algebraic coloring engine (RACE), a novel coloring algorithm and open-source library implementation, which eliminates the shortcomings of previous coloring methods in terms of hardware efficiency and parallelization overhead. We describe the level construction, distance-k coloring, and load balancing steps in RACE, use it to parallelize SymmSpMV, and compare its performance on 31 sparse matrices with other state-of-the-art coloring techniques and Intel MKL on two modern multicore processors. RACE outperforms all other approaches substantially and behaves in accordance with the Roofline model. Outliers are discussed and analyzed in detail. While we focus on SymmSpMV in this paper, our algorithm and software is applicable to any sparse matrix operation with data dependencies that can be resolved by distance-k coloring

    On the design of architecture-aware algorithms for emerging applications

    Get PDF
    This dissertation maps various kernels and applications to a spectrum of programming models and architectures and also presents architecture-aware algorithms for different systems. The kernels and applications discussed in this dissertation have widely varying computational characteristics. For example, we consider both dense numerical computations and sparse graph algorithms. This dissertation also covers emerging applications from image processing, complex network analysis, and computational biology. We map these problems to diverse multicore processors and manycore accelerators. We also use new programming models (such as Transactional Memory, MapReduce, and Intel TBB) to address the performance and productivity challenges in the problems. Our experiences highlight the importance of mapping applications to appropriate programming models and architectures. We also find several limitations of current system software and architectures and directions to improve those. The discussion focuses on system software and architectural support for nested irregular parallelism, Transactional Memory, and hybrid data transfer mechanisms. We believe that the complexity of parallel programming can be significantly reduced via collaborative efforts among researchers and practitioners from different domains. This dissertation participates in the efforts by providing benchmarks and suggestions to improve system software and architectures.Ph.D.Committee Chair: Bader, David; Committee Member: Hong, Bo; Committee Member: Riley, George; Committee Member: Vuduc, Richard; Committee Member: Wills, Scot
    • …
    corecore