82 research outputs found

    Pattern classification approaches for breast cancer identification via MRI: state‐of‐the‐art and vision for the future

    Get PDF
    Mining algorithms for Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCEMRI) of breast tissue are discussed. The algorithms are based on recent advances in multidimensional signal processing and aim to advance current state‐of‐the‐art computer‐aided detection and analysis of breast tumours when these are observed at various states of development. The topics discussed include image feature extraction, information fusion using radiomics, multi‐parametric computer‐aided classification and diagnosis using information fusion of tensorial datasets as well as Clifford algebra based classification approaches and convolutional neural network deep learning methodologies. The discussion also extends to semi‐supervised deep learning and self‐supervised strategies as well as generative adversarial networks and algorithms using generated confrontational learning approaches. In order to address the problem of weakly labelled tumour images, generative adversarial deep learning strategies are considered for the classification of different tumour types. The proposed data fusion approaches provide a novel Artificial Intelligence (AI) based framework for more robust image registration that can potentially advance the early identification of heterogeneous tumour types, even when the associated imaged organs are registered as separate entities embedded in more complex geometric spaces. Finally, the general structure of a high‐dimensional medical imaging analysis platform that is based on multi‐task detection and learning is proposed as a way forward. The proposed algorithm makes use of novel loss functions that form the building blocks for a generated confrontation learning methodology that can be used for tensorial DCE‐MRI. Since some of the approaches discussed are also based on time‐lapse imaging, conclusions on the rate of proliferation of the disease can be made possible. The proposed framework can potentially reduce the costs associated with the interpretation of medical images by providing automated, faster and more consistent diagnosis

    Geometric Variational Models for Inverse Problems in Imaging

    Get PDF
    This dissertation develops geometric variational models for different inverse problems in imaging that are ill-posed, designing at the same time efficient numerical algorithms to compute their solutions. Variational methods solve inverse problems by the following two steps: formulation of a variational model as a minimization problem, and design of a minimization algorithm to solve it. This dissertation is organized in the same manner. It first formulates minimization problems associated with geometric models for different inverse problems in imaging, and it then designs efficient minimization algorithms to compute their solutions. The minimization problem summarizes both the data available from the measurements and the prior knowledge about the solution in its objective functional; this naturally leads to the combination of a measurement or data term and a prior term. Geometry can play a role in any of these terms, depending on the properties of the data acquisition system or the object being imaged. In this context, each chapter of this dissertation formulates a variational model that includes geometry in a different manner in the objective functional, depending on the inverse problem at hand. In the context of compressed sensing, the first chapter exploits the geometric properties of images to include an alignment term in the sparsity prior of compressed sensing; this additional prior term aligns the normal vectors of the level curves of the image with the reconstructed signal, and it improves the quality of reconstruction. A two-step recovery method is designed for that purpose: first, it estimates the normal vectors to the level curves of the image; second, it reconstructs an image matching the compressed sensing measurements, the geometric alignment of normals, and the sparsity constraint of compressed sensing. The proposed method is extended to non-local operators in graphs for the recovery of textures. The harmonic active contours of Chapter 2 make use of differential geometry to interpret the segmentation of an image as a minimal surface manifold. In this case, geometry is exploited in both the measurement term, by coupling the different image channels in a robust edge detector, and in the prior term, by imposing smoothness in the segmentation. The proposed technique generalizes existing active contours to higher dimensional spaces and non-flat images; in the plane, it improves the segmentation of images with inhomogeneities and weak edges. Shape-from-shading is investigated in Chapter 3 for the reconstruction of a silicon wafer from images of printed circuits taken with a scanning electron microscope. In this case, geometry plays a role in the image acquisition system, that is, in the measurement term of the objective functional. The prior term involves a smoothness constraint on the surface and a shape prior on the expected pattern in the circuit. The proposed reconstruction method also estimates a deformation field between the ideal pattern design and the reconstructed surface, substituting the model of shape variability necessary in shape priors with an elastic deformation field that quantifies deviations in the manufacturing process. Finally, the techniques used for the design of efficient numerical algorithms are explained with an example problem based on the level set method. To this purpose, Chapter 4 develops an efficient algorithm for the level set method when the level set function is constrained to remain a signed distance function. The distance function is preserved by the introduction of an explicit constraint in the minimization problem, the minimization algorithm is efficient by the adequate use of variable-splitting and augmented Lagrangian techniques. These techniques introduce additional variables, constraints, and Lagrange multipliers in the original minimization problem, and they decompose it into sub-optimization problems that are simple and can be efficiently solved. As a result, the proposed algorithm is five to six times faster than the original algorithm for the level set method

    Compendio de métodos para caracterizar la geometría de los tejidos cerebrales a partir de imágenes de resonancia magnética por difusión del agua.

    Get PDF
    221 p.FIDMAG Hermanas Hospitalarias Research Foundation; CIBERSAM:Centro de Investigación Biomédica en Re

    Geodesic Active Fields:A Geometric Framework for Image Registration

    Get PDF
    Image registration is the concept of mapping homologous points in a pair of images. In other words, one is looking for an underlying deformation field that matches one image to a target image. The spectrum of applications of image registration is extremely large: It ranges from bio-medical imaging and computer vision, to remote sensing or geographic information systems, and even involves consumer electronics. Mathematically, image registration is an inverse problem that is ill-posed, which means that the exact solution might not exist or not be unique. In order to render the problem tractable, it is usual to write the problem as an energy minimization, and to introduce additional regularity constraints on the unknown data. In the case of image registration, one often minimizes an image mismatch energy, and adds an additive penalty on the deformation field regularity as smoothness prior. Here, we focus on the registration of the human cerebral cortex. Precise cortical registration is required, for example, in statistical group studies in functional MR imaging, or in the analysis of brain connectivity. In particular, we work with spherical inflations of the extracted hemispherical surface and associated features, such as cortical mean curvature. Spatial mapping between cortical surfaces can then be achieved by registering the respective spherical feature maps. Despite the simplified spherical geometry, inter-subject registration remains a challenging task, mainly due to the complexity and inter-subject variability of the involved brain structures. In this thesis, we therefore present a registration scheme, which takes the peculiarities of the spherical feature maps into particular consideration. First, we realize that we need an appropriate hierarchical representation, so as to coarsely align based on the important structures with greater inter-subject stability, before taking smaller and more variable details into account. Based on arguments from brain morphogenesis, we propose an anisotropic scale-space of mean-curvature maps, built around the Beltrami framework. Second, inspired by concepts from vision-related elements of psycho-physical Gestalt theory, we hypothesize that anisotropic Beltrami regularization better suits the requirements of image registration regularization, compared to traditional Gaussian filtering. Different objects in an image should be allowed to move separately, and regularization should be limited to within the individual Gestalts. We render the regularization feature-preserving by limiting diffusion across edges in the deformation field, which is in clear contrast to the indifferent linear smoothing. We do so by embedding the deformation field as a manifold in higher-dimensional space, and minimize the associated Beltrami energy which represents the hyperarea of this embedded manifold as measure of deformation field regularity. Further, instead of simply adding this regularity penalty to the image mismatch in lieu of the standard penalty, we propose to incorporate the local image mismatch as weighting function into the Beltrami energy. The image registration problem is thus reformulated as a weighted minimal surface problem. This approach has several appealing aspects, including (1) invariance to re-parametrization and ability to work with images defined on non-flat, Riemannian domains (e.g., curved surfaces, scalespaces), and (2) intrinsic modulation of the local regularization strength as a function of the local image mismatch and/or noise level. On a side note, we show that the proposed scheme can easily keep up with recent trends in image registration towards using diffeomorphic and inverse consistent deformation models. The proposed registration scheme, called Geodesic Active Fields (GAF), is non-linear and non-convex. Therefore we propose an efficient optimization scheme, based on splitting. Data-mismatch and deformation field regularity are optimized over two different deformation fields, which are constrained to be equal. The constraint is addressed using an augmented Lagrangian scheme, and the resulting optimization problem is solved efficiently using alternate minimization of simpler sub-problems. In particular, we show that the proposed method can easily compete with state-of-the-art registration methods, such as Demons. Finally, we provide an implementation of the fast GAF method on the sphere, so as to register the triangulated cortical feature maps. We build an automatic parcellation algorithm for the human cerebral cortex, which combines the delineations available on a set of atlas brains in a Bayesian approach, so as to automatically delineate the corresponding regions on a subject brain given its feature map. In a leave-one-out cross-validation study on 39 brain surfaces with 35 manually delineated gyral regions, we show that the pairwise subject-atlas registration with the proposed spherical registration scheme significantly improves the individual alignment of cortical labels between subject and atlas brains, and, consequently, that the estimated automatic parcellations after label fusion are of better quality

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    proceedings of a workshop held at Göttingen September 27 - 29, 2006

    Get PDF
    An international workshop entitled: Modern Solar Facilities - Advanced Solar Science was held in Göttingen from September 27 until September 29, 2006. The workshop, which was attended by 88 participants from 24 different countries, gave a broad overview of the current state of solar research, with emphasis on modern telescopes and techniques, advanced observational methods and results, and on modern theoretical methods of modelling, computation, and data reduction in solar physics. This book collects written versions of contributions that were presented at the workshop as invited or contributed talks, and as poster contributions.Vom 27. bis 29. September 2006 fand in Göttingen ein internationaler Workshop zum Thema: Modern Solar Facilities - Advanced Solar Science statt, der von 88 Teilnehmern aus 24 verschiedenen Ländern besucht wurde und der einen breiten Überblick über den gegenwärtigen Stand der sonnenphysikalischen Forschung gab, unter Betonung moderner Teleskope und Techniken, fortschrittlicher Beobachtungsmethoden und Ergebnisse, sowie zu modernen theoretischen Verfahren der Modellierung, Berechnung und Datenreduktion in der Sonnenphysik. Dieser Band fasst die schriftlichen Versionen von Beiträgen zusammen, die auf der Konferenz als eingeladene oder angemeldete Vorträge, sowie als Posterbeiträge präsentiert worden sind.conferenc
    corecore