1,265 research outputs found

    Vectorial Languages and Linear Temporal Logic

    Get PDF
    International audienceDetermining for a given deterministic complete automaton the sequence of visited states while reading a given word is the core of important problems with automata-based solutions, such as approximate string matching. The main difficulty is to do this computation efficiently, especially when dealing with very large texts. Considering words as vectors and working on them using vectorial (parallel) operations allows to solve the problem faster than in linear time using sequential computations. In this paper, we show first that the set of vectorial operations needed by an algorithm representing a given automaton depends only on the language accepted by the automaton. We give precise characterizations of vectorial algorithms for star-free, solvable and regular languages in terms of the vectorial operations allowed. We also consider classes of languages associated with restricted sets of vectorial operations and relate them with languages defined by fragments of linear temporal logic. Finally, we consider the converse problem of constructing an automaton from a given vectorial algorithm. As a byproduct, we show that the satisfiability problem for some extensions of linear-time temporal logic characterizing solvable and regular languages is PSPACE-complete

    Temporal Logic with Recursion

    Get PDF
    We introduce extensions of the standard temporal logics CTL and LTL with a recursion operator that takes propositional arguments. Unlike other proposals for modal fixpoint logics of high expressive power, we obtain logics that retain some of the appealing pragmatic advantages of CTL and LTL, yet have expressive power beyond that of the modal ?-calculus or MSO. We advocate these logics by showing how the recursion operator can be used to express interesting non-regular properties. We also study decidability and complexity issues of the standard decision problems

    The Logic behind Feynman's Paths

    Full text link
    The classical notions of continuity and mechanical causality are left in order to refor- mulate the Quantum Theory starting from two principles: I) the intrinsic randomness of quantum process at microphysical level, II) the projective representations of sym- metries of the system. The second principle determines the geometry and then a new logic for describing the history of events (Feynman's paths) that modifies the rules of classical probabilistic calculus. The notion of classical trajectory is replaced by a history of spontaneous, random an discontinuous events. So the theory is reduced to determin- ing the probability distribution for such histories according with the symmetries of the system. The representation of the logic in terms of amplitudes leads to Feynman rules and, alternatively, its representation in terms of projectors results in the Schwinger trace formula.Comment: 15 pages, contribution to Mario Castagnino Festschrif

    The \mu-Calculus Alternation Hierarchy Collapses over Structures with Restricted Connectivity

    Full text link
    It is known that the alternation hierarchy of least and greatest fixpoint operators in the mu-calculus is strict. However, the strictness of the alternation hierarchy does not necessarily carry over when considering restricted classes of structures. A prominent instance is the class of infinite words over which the alternation-free fragment is already as expressive as the full mu-calculus. Our current understanding of when and why the mu-calculus alternation hierarchy is not strict is limited. This paper makes progress in answering these questions by showing that the alternation hierarchy of the mu-calculus collapses to the alternation-free fragment over some classes of structures, including infinite nested words and finite graphs with feedback vertex sets of a bounded size. Common to these classes is that the connectivity between the components in a structure from such a class is restricted in the sense that the removal of certain vertices from the structure's graph decomposes it into graphs in which all paths are of finite length. Our collapse results are obtained in an automata-theoretic setting. They subsume, generalize, and strengthen several prior results on the expressivity of the mu-calculus over restricted classes of structures.Comment: In Proceedings GandALF 2012, arXiv:1210.202
    • 

    corecore