15,307 research outputs found

    Memetic Multi-Objective Particle Swarm Optimization-Based Energy-Aware Virtual Network Embedding

    Full text link
    In cloud infrastructure, accommodating multiple virtual networks on a single physical network reduces power consumed by physical resources and minimizes cost of operating cloud data centers. However, mapping multiple virtual network resources to physical network components, called virtual network embedding (VNE), is known to be NP-hard. With considering energy efficiency, the problem becomes more complicated. In this paper, we model energy-aware virtual network embedding, devise metrics for evaluating performance of energy aware virtual network-embedding algorithms, and propose an energy aware virtual network-embedding algorithm based on multi-objective particle swarm optimization augmented with local search to speed up convergence of the proposed algorithm and improve solutions quality. Performance of the proposed algorithm is evaluated and compared with existing algorithms using extensive simulations, which show that the proposed algorithm improves virtual network embedding by increasing revenue and decreasing energy consumption.Comment: arXiv admin note: text overlap with arXiv:1504.0684

    Hybridization of multi-objective deterministic particle swarm with derivative-free local searches

    Get PDF
    The paper presents a multi-objective derivative-free and deterministic global/local hybrid algorithm for the efficient and effective solution of simulation-based design optimization (SBDO) problems. The objective is to show how the hybridization of two multi-objective derivative-free global and local algorithms achieves better performance than the separate use of the two algorithms in solving specific SBDO problems for hull-form design. The proposed method belongs to the class of memetic algorithms, where the global exploration capability of multi-objective deterministic particle swarm optimization is enriched by exploiting the local search accuracy of a derivative-free multi-objective line-search method. To the authors best knowledge, studies are still limited on memetic, multi-objective, deterministic, derivative-free, and evolutionary algorithms for an effective and efficient solution of SBDO for hull-form design. The proposed formulation manages global and local searches based on the hypervolume metric. The hybridization scheme uses two parameters to control the local search activation and the number of function calls used by the local algorithm. The most promising values of these parameters were identified using forty analytical tests representative of the SBDO problem of interest. The resulting hybrid algorithm was finally applied to two SBDO problems for hull-form design. For both analytical tests and SBDO problems, the hybrid method achieves better performance than its global and local counterparts

    A Coevolutionary Particle Swarm Algorithm for Bi-Level Variational Inequalities: Applications to Competition in Highway Transportation Networks

    Get PDF
    A climate of increasing deregulation in traditional highway transportation, where the private sector has an expanded role in the provision of traditional transportation services, provides a background for practical policy issues to be investigated. One of the key issues of interest, and the focus of this chapter, would be the equilibrium decision variables offered by participants in this market. By assuming that the private sector participants play a Nash game, the above problem can be described as a Bi-Level Variational Inequality (BLVI). Our problem differs from the classical Cournot-Nash game because each and every player’s actions is constrained by another variational inequality describing the equilibrium route choice of users on the network. In this chapter, we discuss this BLVI and suggest a heuristic coevolutionary particle swarm algorithm for its resolution. Our proposed algorithm is subsequently tested on example problems drawn from the literature. The numerical experiments suggest that the proposed algorithm is a viable solution method for this problem

    Improved dynamical particle swarm optimization method for structural dynamics

    Get PDF
    A methodology to the multiobjective structural design of buildings based on an improved particle swarm optimization algorithm is presented, which has proved to be very efficient and robust in nonlinear problems and when the optimization objectives are in conflict. In particular, the behaviour of the particle swarm optimization (PSO) classical algorithm is improved by dynamically adding autoadaptive mechanisms that enhance the exploration/exploitation trade-off and diversity of the proposed algorithm, avoiding getting trapped in local minima. A novel integrated optimization system was developed, called DI-PSO, to solve this problem which is able to control and even improve the structural behaviour under seismic excitations. In order to demonstrate the effectiveness of the proposed approach, the methodology is tested against some benchmark problems. Then a 3-story-building model is optimized under different objective cases, concluding that the improved multiobjective optimization methodology using DI-PSO is more efficient as compared with those designs obtained using single optimization.Peer ReviewedPostprint (published version

    Enhanced Estimation of Autoregressive Wind Power Prediction Model Using Constriction Factor Particle Swarm Optimization

    Full text link
    Accurate forecasting is important for cost-effective and efficient monitoring and control of the renewable energy based power generation. Wind based power is one of the most difficult energy to predict accurately, due to the widely varying and unpredictable nature of wind energy. Although Autoregressive (AR) techniques have been widely used to create wind power models, they have shown limited accuracy in forecasting, as well as difficulty in determining the correct parameters for an optimized AR model. In this paper, Constriction Factor Particle Swarm Optimization (CF-PSO) is employed to optimally determine the parameters of an Autoregressive (AR) model for accurate prediction of the wind power output behaviour. Appropriate lag order of the proposed model is selected based on Akaike information criterion. The performance of the proposed PSO based AR model is compared with four well-established approaches; Forward-backward approach, Geometric lattice approach, Least-squares approach and Yule-Walker approach, that are widely used for error minimization of the AR model. To validate the proposed approach, real-life wind power data of \textit{Capital Wind Farm} was obtained from Australian Energy Market Operator. Experimental evaluation based on a number of different datasets demonstrate that the performance of the AR model is significantly improved compared with benchmark methods.Comment: The 9th IEEE Conference on Industrial Electronics and Applications (ICIEA) 201

    Nash Equilibria, collusion in games and the coevolutionary particle swarm algorithm

    Get PDF
    In recent work, we presented a deterministic algorithm to investigate collusion between players in a game where the players’ payoff functions are subject to a variational inequality describing the equilibrium of a transportation system. In investigating the potential for collusion between players, the diagonalization algorithm returned a local optimum. In this paper, we apply a coevolutionary particle swarm optimization (PSO) algorithm developed in earlier research in an attempt to return the global maximum. A numerical experiment is used to verify the performance of the algorithm in overcoming local optimum
    • …
    corecore