1,071 research outputs found

    Subdivisions with infinitely supported mask

    Get PDF
    AbstractIn this paper we investigate the convergence of subdivision schemes associated with masks being polynomially decay sequences. Two-scale vector refinement equations are the formφ(x)=∑α∈Za(α)φ(2x-α),x∈R,where the vector of functions φ=(φ1,…,φr)T is in (L2(R))r and a≕(a(α))α∈Z is polynomially decay sequence of r×r matrices called refinement mask. Associated with the mask a is a linear operator on (L2(R))r given byQaf(x)≔∑α∈Za(α)f(2x-α),x∈R,f=(f1,…,fr)T∈(L2(R))r.By using same methods in [B. Han, R. Q. Jia, Characterization of Riesz bases of wavelets generated from multiresolution analysis, manuscript]; [B. Han, Refinable functions and cascade algorithms in weighted spaces with infinitely supported masks, manuscript]; [R.Q. Jia, Q.T. Jiang, Z.W. Shen, Convergence of cascade algorithms associated with nonhomogeneous refinement equations, Proc. Amer. Math. Soc. 129 (2001) 415–427]; [R.Q. Jia, Convergence of vector subdivision schemes and construction of biorthogonal multiple wavelets, in: Advances in Wavelet, Hong Kong,1997, Springer, Singapore, 1998, pp. 199–227], a characterization of convergence of the sequences (Qanf)n=1,2,… in the L2-norm is given, which extends the main results in [R.Q. Jia, S.D. Riemenschneider, D.X. Zhou, Vector subdivision schemes and multiple wavelets, Math. Comp. 67 (1998) 1533–1563] on convergence of the subdivision schemes associated with a finitely supported mask to the case in which mask a is polynomially decay sequence. As an application, we also obtain a characterization of smoothness of solutions of the refinement equation mentioned above for the case r=1

    Numerics and Fractals

    Full text link
    Local iterated function systems are an important generalisation of the standard (global) iterated function systems (IFSs). For a particular class of mappings, their fixed points are the graphs of local fractal functions and these functions themselves are known to be the fixed points of an associated Read-Bajactarevi\'c operator. This paper establishes existence and properties of local fractal functions and discusses how they are computed. In particular, it is shown that piecewise polynomials are a special case of local fractal functions. Finally, we develop a method to compute the components of a local IFS from data or (partial differential) equations.Comment: version 2: minor updates and section 6.1 rewritten, arXiv admin note: substantial text overlap with arXiv:1309.0243. text overlap with arXiv:1309.024

    Non-equispaced B-spline wavelets

    Full text link
    This paper has three main contributions. The first is the construction of wavelet transforms from B-spline scaling functions defined on a grid of non-equispaced knots. The new construction extends the equispaced, biorthogonal, compactly supported Cohen-Daubechies-Feauveau wavelets. The new construction is based on the factorisation of wavelet transforms into lifting steps. The second and third contributions are new insights on how to use these and other wavelets in statistical applications. The second contribution is related to the bias of a wavelet representation. It is investigated how the fine scaling coefficients should be derived from the observations. In the context of equispaced data, it is common practice to simply take the observations as fine scale coefficients. It is argued in this paper that this is not acceptable for non-interpolating wavelets on non-equidistant data. Finally, the third contribution is the study of the variance in a non-orthogonal wavelet transform in a new framework, replacing the numerical condition as a measure for non-orthogonality. By controlling the variances of the reconstruction from the wavelet coefficients, the new framework allows us to design wavelet transforms on irregular point sets with a focus on their use for smoothing or other applications in statistics.Comment: 42 pages, 2 figure
    • …
    corecore