9,597 research outputs found

    Texture analysis via unsupervised and supervised learning

    Get PDF
    A framework for texture analysis based on combined unsupervised and supervised learning is proposed. The textured input is represented in the frequency-orientation space via a Gabor-wavelet pyramidal decomposition. In the unsupervised learning phase a neural network vector quantization scheme is used for the quantization of the feature-vector attributes and a projection onto a reduced dimension clustered map for initial segmentation. A supervised stage follows, in which labeling of the textured map is achieved using a rule-based system. A set of informative features are extracted in the supervised stage as congruency rules between attributes using an information-theoretic measure. This learned set can now act as a classification set for test images. This approach is suggested as a general framework for pattern classification. Simulation results for the texture classification are given

    Cross-convolutional-layer Pooling for Image Recognition

    Get PDF
    Recent studies have shown that a Deep Convolutional Neural Network (DCNN) pretrained on a large image dataset can be used as a universal image descriptor, and that doing so leads to impressive performance for a variety of image classification tasks. Most of these studies adopt activations from a single DCNN layer, usually the fully-connected layer, as the image representation. In this paper, we proposed a novel way to extract image representations from two consecutive convolutional layers: one layer is utilized for local feature extraction and the other serves as guidance to pool the extracted features. By taking different viewpoints of convolutional layers, we further develop two schemes to realize this idea. The first one directly uses convolutional layers from a DCNN. The second one applies the pretrained CNN on densely sampled image regions and treats the fully-connected activations of each image region as convolutional feature activations. We then train another convolutional layer on top of that as the pooling-guidance convolutional layer. By applying our method to three popular visual classification tasks, we find our first scheme tends to perform better on the applications which need strong discrimination on subtle object patterns within small regions while the latter excels in the cases that require discrimination on category-level patterns. Overall, the proposed method achieves superior performance over existing ways of extracting image representations from a DCNN.Comment: Fixed typos. Journal extension of arXiv:1411.7466. Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligenc

    Evaluation of color representation for texture analysis

    Get PDF
    Since more than 50 years texture in image material is a topic of research. Hereby, color was ignored mostly. This study compares 70 different configurations for texture analysis, using four features. For the configurations we used: (i) a gray value texture descriptor: the co-occurrence matrix and a color texture descriptor: the color correlogram, (ii) six color spaces, and (iii) several quantization schemes. A three classifier combination was used to classify the output of the configurations on the VisTex texture database. The results indicate that the use of a coarse HSV color space quantization can substantially improve texture recognition compared to various other gray and color quantization schemes
    • …
    corecore