181 research outputs found

    Digital hologram recording systems: some performance improvements

    Get PDF
    The work presented in this thesis was performed under the EU's Framework 7 (FP7) project, 'REAL3D'. The aim of this project is to develop methods based on digital holography for real time capture and display of 3D objects. This thesis forms a small subset of all the work done in this project. Much of the research work was aimed towards fullling our part of the requirements of the REAL3D project. The central theme of the research presented in this thesis is that of improving the performance of the digital holographic imaging system for its use in 3D display. This encompasses research into speed up of reconstruction algorithms, understanding the in uence of noise and developing techniques to increase resolution and angular perspective range in reconstructions. The main original contributions of this research work presented in this thesis are: A computer-interfaced automatic digital holographic imaging system employing `phase shifting' has been built. This system is capable of recording high-quality digital holograms of a real world 3D object. The object can be rotated on a rotational stage and a full 360 range of perspectives can be recorded. Speckle reduction using moving diusers can be performed to improve the image quality of the reconstructed images. A LabView based user friendly interface has been developed. Novel methods based on space-time tradeo and xed point arithmetic have been developed and implemented for speed- ing up the reconstruction algorithm used in digital holography. This has resulted in the publication of one peer-reviewed journal pub- lication and one conference proceeding [1, 2]. The in uence of additive noise, particularly quantization noise in digital holography has been studied in detail. A model has been developed to understand the in uence of noise on the re- constructed image quality. Based on this model, a method has been developed to suppress quantization noise in a memory ecient man- ner. This work led to the publication of two peer-reviewed journal publications [3, 4]. A novel method of removing the twin image has been devel- oped. Methods to increase the perspectives in holography based on synthetic aperture have been implemented. Apart from these primary contributions, the author of this thesis has also contributed in the form of assisting in experiments, creating gures for various papers, writing computer programs and discussions during group meetings. In total, 6 peer-reviewed journal papers (3 being primary author) have been published and 6 conference proceedings (3 being primary author) have been published. Additionally, 2 talks have been given at international conferences

    Coefficients Quantization at Off-axis Digital Hologram Wavelet Compression

    Get PDF
    Digital holographic information is compressed for storage of 2D- or 3D-objects amplitude and phase distributions, fast transmission, analyzing and displaying of these data. In this paper features of application of wavelet transforms for off-axis digital holograms compression are considered. The combined technique based on zero and twin orders elimination, wavelet compression of the amplitude and phase components of obtained Fourier spectrum and further additional compression of wavelet coefficients by thresholding and quantization is analyzed. Numerical experiments on reconstruction of images from the compressed holograms are performed. The comparative analysis of applicability of various wavelets and additional quantization of coefficients is performed. Obtained results demonstrate possibility of 180 and more times compression using iterative and noniterative methods of coefficients quantization and threshold zeroing less 80% of wavelet coefficients. Keywords: digital holography, hologram compression, wavelets, quantization, thresholding, digital image processing

    Recent Advances in the Processing and Rendering Algorithms for Computer-Generated Holography

    Get PDF
    Digital holography represents a novel media which promises to revolutionize the way the users interacts with content. This paper presents an in-depth review of the state-of-the-art algorithms for advanced processing and rendering of computer-generated holography. Open-access holographic data are selected and characterized as references for the experimental analysis. The design of a tool for digital hologram rendering and quality evaluation is presented and implemented as an open-source reference software, with the aim to encourage the approach to the holography research area, and simplify the rendering and quality evaluation tasks. Exploration studies focused on the reproducibility of the results are reported, showing a practical application of the proposed architecture for standardization activities. A final discussion on the results obtained is reported, also highlighting the future developments of the reconstruction software that is made publicly available with this work

    Improving reconstructions of digital holograms

    Get PDF
    Digital holography is a two step process of recording a hologram on an electronic sensor and reconstructing it numerically. This thesis makes a number of contri- butions to the second step of this process. These can be split into two distinct parts: A) speckle reduction in reconstructions of digital holograms (DHs), and B) modeling and overcoming partial occlusion e®ects in reconstructions of DHs, and using occlusions to reduce the effects of the twin image in reconstructions of DHs. Part A represents the major part of this thesis. Speckle reduction forms an important step in many digital holographic applications and we have developed a number of techniques that can be used to reduce its corruptive effect in recon- structions of DHs. These techniques range from 3D filtering of DH reconstructions to a technique that filters in the Fourier domain of the reconstructed DH. We have also investigated the most commonly used industrial speckle reduction technique - wavelet filters. In Part B, we investigate the nature of opaque and non-opaque partial occlusions. We motivate this work by trying to ¯nd a subset of pixels that overcome the effects of a partial occlusion, thus revealing otherwise hidden features on an object captured using digital holography. Finally, we have used an occlusion at the twin image plane to completely remove the corrupting effect of the out-of-focus twin image on reconstructions of DHs
    • …
    corecore