137 research outputs found

    High-Level Synthesis for Embedded Systems

    Get PDF

    On the design of multimedia architectures : proceedings of a one-day workshop, Eindhoven, December 18, 2003

    Get PDF

    Design of data buffers in field programmablr gate arrays

    Get PDF
    The design of the data buffers for the field programable gate array (FPGA) projects is considered. A new method of buffer design is proposed, which is based on the representation of the synchronous dataflow graph in the three-dimensional space, optimization of them, and description in VHDL. The method gives the optimized buffers which are based either on RAM or on the register pipeline. The derived pipeline buffer can be mapped into the shift register primitive of FPGA. The method is built in the experimental SDFCAD framework intended for the pipelined datapath synthesis

    Optimization of DSSS Receivers Using Hardware-in-the-Loop Simulations

    Get PDF
    Over the years, there has been significant interest in defining a hardware abstraction layer to facilitate code reuse in software defined radio (SDR) applications. Designers are looking for a way to enable application software to specify a waveform, configure the platform, and control digital signal processing (DSP) functions in a hardware platform in a way that insulates it from the details of realization. This thesis presents a tool-based methodolgy for developing and optimizing a Direct Sequence Spread Spectrum (DSSS) transceiver deployed in custom hardware like Field Programmble Gate Arrays (FPGAs). The system model consists of a tranmitter which employs a quadrature phase shift keying (QPSK) modulation scheme, an additive white Gaussian noise (AWGN) channel, and a receiver whose main parts consist of an analog-to-digital converter (ADC), digital down converter (DDC), image rejection low-pass filter (LPF), carrier phase locked loop (PLL), tracking locked loop, down-sampler, spread spectrum correlators, and rectangular-to-polar converter. The design methodology is based on a new programming model for FPGAs developed in the industry by Xilinx Inc. The Xilinx System Generator for DSP software tool provides design portability and streamlines system development by enabling engineers to create and validate a system model in Xilinx FPGAs. By providing hierarchical modeling and automatic HDL code generation for programmable devices, designs can be easily verified through hardware-in-the-loop (HIL) simulations. HIL provides a significant increase in simulation speed which allows optimization of the receiver design with respect to the datapath size for different functional parts of the receiver. The parameterized datapath points used in the simulation are ADC resolution, DDC datapath size, LPF datapath size, correlator height, correlator datapath size, and rectangular-to-polar datapath size. These parameters are changed in the software enviornment and tested for bit error rate (BER) performance through real-time hardware simualtions. The final result presents a system design with minimum harware area occupancy relative to an acceptable BER degradation

    Optimizing Dataflow Programs for Hardware Synthesis

    Get PDF
    • …
    corecore