593 research outputs found

    A Survey of path following control strategies for UAVs focused on quadrotors

    Get PDF
    The trajectory control problem, defined as making a vehicle follow a pre-established path in space, can be solved by means of trajectory tracking or path following. In the trajectory tracking problem a timed reference position is tracked. The path following approach removes any time dependence of the problem, resulting in many advantages on the control performance and design. An exhaustive review of path following algorithms applied to quadrotor vehicles has been carried out, the most relevant are studied in this paper. Then, four of these algorithms have been implemented and compared in a quadrotor simulation platform: Backstepping and Feedback Linearisation control-oriented algorithms and NLGL and Carrot-Chasing geometric algorithms.Peer ReviewedPostprint (author's final draft

    Three-Dimensional, Vision-Based Proportional Navigation for UAV Collision Avoidance

    Get PDF
    As the number of potential applications for Unmanned Aerial Vehicles (UAVs) keeps rising steadily, the chances that these devices will operate in close proximity to static or dynamic obstacles also increases. Therefore, collision avoidance is an important challenge to overcome for Unmanned Aerial Vehicle operations. Electro-optical devices have several advantages such as light weight, low cost, low algorithm requirements with respect to computational power and possibly night vision capabilities. Therefore, vision-based Unmanned Aerial Vehicle collision avoidance has received considerable attention. Although much progress has been made in collision avoidance systems (CAS), most approaches are focused on two-dimensional environments. In order to operate in complex three-dimensional urban environments, three-dimensional collision avoidance systems are required. This thesis develops a three-dimensional vision-based collision avoidance system to provide sense and avoid capabilities for unmanned aerial vehicles (UAVs) operating in complex urban environments with multiple static and dynamic collision threats. This collision avoidance system is based on the principle of proportional navigation (Pro-Nav), which states that a collision will occur when the line-of-sight (LOS) angles to another object remain constant. According to this guidance law, monocular electro-optical devices can be implemented on Unmanned Aerial Vehicles, which can provide measurements of the line-of-sight angles, indicating potential collision threats. In this thesis, the guidance laws were applied to a nonlinear, six degree-of-freedom Unmanned Aerial Vehicles model in different two-dimensional or three dimensional simulation environments with a varying number of static and dynamic obstacles

    Geometric versus Model Predictive Control based guidance algorithms for fixed-wing UAVs in the presence of very strong wind fields.

    Get PDF
    The recent years have witnessed increased development of small, autonomous fixed-wing Unmanned Aerial Vehicles (UAVs). In order to unlock widespread applicability of these platforms, they need to be capable of operating under a variety of environmental conditions. Due to their small size, low weight, and low speeds, they require the capability of coping with wind speeds that are approaching or even faster than the nominal airspeed. In this thesis, a nonlinear-geometric guidance strategy is presented, addressing this problem. More broadly, a methodology is proposed for the high-level control of non-holonomic unicycle-like vehicles in the presence of strong flowfields (e.g. winds, underwater currents) which may outreach the maximum vehicle speed. The proposed strategy guarantees convergence to a safe and stable vehicle configuration with respect to the flowfield, while preserving some tracking performance with respect to the target path. As an alternative approach, an algorithm based on Model Predictive Control (MPC) is developed, and a comparison between advantages and disadvantages of both approaches is drawn. Evaluations in simulations and a challenging real-world flight experiment in very windy conditions confirm the feasibility of the proposed guidance approach

    Dynamic Motion Planning for Aerial Surveillance on a Fixed-Wing UAV

    Full text link
    We present an efficient path planning algorithm for an Unmanned Aerial Vehicle surveying a cluttered urban landscape. A special emphasis is on maximizing area surveyed while adhering to constraints of the UAV and partially known and updating environment. A Voronoi bias is introduced in the probabilistic roadmap building phase to identify certain critical milestones for maximal surveillance of the search space. A kinematically feasible but coarse tour connecting these milestones is generated by the global path planner. A local path planner then generates smooth motion primitives between consecutive nodes of the global path based on UAV as a Dubins vehicle and taking into account any impending obstacles. A Markov Decision Process (MDP) models the control policy for the UAV and determines the optimal action to be undertaken for evading the obstacles in the vicinity with minimal deviation from current path. The efficacy of the proposed algorithm is evaluated in an updating simulation environment with dynamic and static obstacles.Comment: Accepted at International Conference on Unmanned Aircraft Systems 201

    A reformulation of collision avoidance algorithm based on artificial potential fields for fixed-wing UAVs in a dynamic environment

    Full text link
    As mini UAVs become increasingly useful in the civilian work domain, the need for a method for them to operate safely in a cluttered environment is growing, especially for fixed-wing UAVs as they are incapable of following the stop-decide-execute methodology. This paper presents preliminary research to design a reactive collision avoidance algorithm based on the improved definition of the repulsive forces used in the Artificial potential field algorithms to allow feasible and safe navigation of fixed-wing UAVs in cluttered, dynamic environments. We present simulation results of the improved definition in multiple scenarios, and we have also discussed possible future studies to improve upon these results.Comment: This paper presents a preliminary work and is not intended for publicatio

    Geometric versus Model Predictive Control based guidance algorithms for fixed-wing UAVs in the presence of very strong wind fields.

    Get PDF
    The recent years have witnessed increased development of small, autonomous fixed-wing Unmanned Aerial Vehicles (UAVs). In order to unlock widespread applicability of these platforms, they need to be capable of operating under a variety of environmental conditions. Due to their small size, low weight, and low speeds, they require the capability of coping with wind speeds that are approaching or even faster than the nominal airspeed. In this thesis, a nonlinear-geometric guidance strategy is presented, addressing this problem. More broadly, a methodology is proposed for the high-level control of non-holonomic unicycle-like vehicles in the presence of strong flowfields (e.g. winds, underwater currents) which may outreach the maximum vehicle speed. The proposed strategy guarantees convergence to a safe and stable vehicle configuration with respect to the flowfield, while preserving some tracking performance with respect to the target path. As an alternative approach, an algorithm based on Model Predictive Control (MPC) is developed, and a comparison between advantages and disadvantages of both approaches is drawn. Evaluations in simulations and a challenging real-world flight experiment in very windy conditions confirm the feasibility of the proposed guidance approach

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space
    • …
    corecore