5,605 research outputs found

    Geodetic monitoring of complex shaped infrastructures using Ground-Based InSAR

    Get PDF
    In the context of climate change, alternatives to fossil energies need to be used as much as possible to produce electricity. Hydroelectric power generation through the utilisation of dams stands out as an exemplar of highly effective methodologies in this endeavour. Various monitoring sensors can be installed with different characteristics w.r.t. spatial resolution, temporal resolution and accuracy to assess their safe usage. Among the array of techniques available, it is noteworthy that ground-based synthetic aperture radar (GB-SAR) has not yet been widely adopted for this purpose. Despite its remarkable equilibrium between the aforementioned attributes, its sensitivity to atmospheric disruptions, specific acquisition geometry, and the requisite for phase unwrapping collectively contribute to constraining its usage. Several processing strategies are developed in this thesis to capitalise on all the opportunities of GB-SAR systems, such as continuous, flexible and autonomous observation combined with high resolutions and accuracy. The first challenge that needs to be solved is to accurately localise and estimate the azimuth of the GB-SAR to improve the geocoding of the image in the subsequent step. A ray tracing algorithm and tomographic techniques are used to recover these external parameters of the sensors. The introduction of corner reflectors for validation purposes confirms a significant error reduction. However, for the subsequent geocoding, challenges persist in scenarios involving vertical structures due to foreshortening and layover, which notably compromise the geocoding quality of the observed points. These issues arise when multiple points at varying elevations are encapsulated within a singular resolution cell, posing difficulties in pinpointing the precise location of the scattering point responsible for signal return. To surmount these hurdles, a Bayesian approach grounded in intensity models is formulated, offering a tool to enhance the accuracy of the geocoding process. The validation is assessed on a dam in the black forest in Germany, characterised by a very specific structure. The second part of this thesis is focused on the feasibility of using GB-SAR systems for long-term geodetic monitoring of large structures. A first assessment is made by testing large temporal baselines between acquisitions for epoch-wise monitoring. Due to large displacements, the phase unwrapping can not recover all the information. An improvement is made by adapting the geometry of the signal processing with the principal component analysis. The main case study consists of several campaigns from different stations at Enguri Dam in Georgia. The consistency of the estimated displacement map is assessed by comparing it to a numerical model calibrated on the plumblines data. It exhibits a strong agreement between the two results and comforts the usage of GB-SAR for epoch-wise monitoring, as it can measure several thousand points on the dam. It also exhibits the possibility of detecting local anomalies in the numerical model. Finally, the instrument has been installed for continuous monitoring for over two years at Enguri Dam. An adequate flowchart is developed to eliminate the drift happening with classical interferometric algorithms to achieve the accuracy required for geodetic monitoring. The analysis of the obtained time series confirms a very plausible result with classical parametric models of dam deformations. Moreover, the results of this processing strategy are also confronted with the numerical model and demonstrate a high consistency. The final comforting result is the comparison of the GB-SAR time series with the output from four GNSS stations installed on the dam crest. The developed algorithms and methods increase the capabilities of the GB-SAR for dam monitoring in different configurations. It can be a valuable and precious supplement to other classical sensors for long-term geodetic observation purposes as well as short-term monitoring in cases of particular dam operations

    Differential spectrum modeling and sensitivity for keV sterile neutrino search at KATRIN

    Get PDF
    Starting in 2026, the KATRIN experiment will conduct a high-statistics measurement of the differential tritium β\beta-spectrum to energies deep below the kinematic endpoint. This enables the search for keV sterile neutrinos with masses less than the kinematic endpoint energy m4E0=18.6keVm_\mathrm{4} \leq E_0 = 18.6\,\mathrm{keV}, aiming for a statistical sensitivity of Ue42=sin2θ106|U_\mathrm{e4}|^2=\sin^2\theta\sim 10^{-6} for the mixing amplitude. The differential spectrum is obtained by decreasing the retarding potential of KATRIN\u27s main spectrometer, and by determining the β\beta-electron energies by their energy deposition in the new TRISTAN SDD array. In this mode of operation, the existing integral model of the tritium spectrum is insufficient, and a novel differential model is developed in this work. The new model (TRModel) convolves the differential tritium spectrum using responese matrices to predict the energy spectrum of registered events after data acquisition. Each response matrix encodes the spectral spectral distrortion from individual experimental effects, which depend on adjustable systematic parameters. This approach allows to efficiently assess the sensitivity impact of each systematics individually or in combination with others. The response matrices are obtained from monte carlo simulations, numerical convolution, and analytical computation. In this work, the sensitivity impact of 20 systematic parameters is assessed for the TRISTAN Phase-1 measurement for which nine TRISTAN SDD modules are integrated into the KATRIN beamline. Furthermore, it is demonstrated that the sensitivity impact is significantly mitigated with several beamline field adjustments and minimal hardware modifications

    Binary Black Hole Astrophysics with Gravitational Waves

    Get PDF
    Gravitational Waves (GWs) have quickly emerged as powerful, indispensabletools for studying gravity in the strong field regime and high-energy astrophysical phenomena since they were first directly detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO) on September 14, 2015. Over the course of this dissertation work gravitational-wave astronomy has begun to mature, going from 11 GW observations when I began to 90 at the time of writing, just before the next observing run begins. As the network of GW observatories continues to grow and these observations become a regular occurrence, the entire population of merging compact objects observed with GWs will provide a unique probe of the astrophysics of their formation and evolution along with the cosmic expansion of the universe. In this dissertation I present four studies that I have led using GWs to better understand the astrophysics of the currently most detected GW source, binary black holes (BBHs). We first present a novel data-driven technique to look for deviations from modeled gravitational waveforms in the data, coherent across the network of observatories, along with an analysis of the first gravitational- wave transient catalog (GWTC-1). The following three studies present the three different approaches to modeling populations of BBHs, using parametric, semi- parametric and non-parametric models. The first of these studies uses a parametric model that imposes a gap in the mass distribution of black holes, looking for evidence of effects caused by pair-instability supernovae. The second study introduces a semi-parametric model that aims to take advantage of the benefits of both parametric and non-parametric methods, by imposing a flexible perturbation to an underlying simpler parametric description. This study was among the first data-driven studies revealing possible structure in the mass distribution of BBHs using GWTC-2, namely an additional peak at 10M⊙ . The final study introduces a novel non-parametric model for hierarchically inferring population properties of GW sources, and performs the most comprehensive data-driven study of the BBH population to date. This study is also the first that uses non-parametric models to simultaneously infer the distributions of BBH masses, spins and redshifts. This dissertation contains previously published and unpublished material

    The Application of Data Analytics Technologies for the Predictive Maintenance of Industrial Facilities in Internet of Things (IoT) Environments

    Get PDF
    In industrial production environments, the maintenance of equipment has a decisive influence on costs and on the plannability of production capacities. In particular, unplanned failures during production times cause high costs, unplanned downtimes and possibly additional collateral damage. Predictive Maintenance starts here and tries to predict a possible failure and its cause so early that its prevention can be prepared and carried out in time. In order to be able to predict malfunctions and failures, the industrial plant with its characteristics, as well as wear and ageing processes, must be modelled. Such modelling can be done by replicating its physical properties. However, this is very complex and requires enormous expert knowledge about the plant and about wear and ageing processes of each individual component. Neural networks and machine learning make it possible to train such models using data and offer an alternative, especially when very complex and non-linear behaviour is evident. In order for models to make predictions, as much data as possible about the condition of a plant and its environment and production planning data is needed. In Industrial Internet of Things (IIoT) environments, the amount of available data is constantly increasing. Intelligent sensors and highly interconnected production facilities produce a steady stream of data. The sheer volume of data, but also the steady stream in which data is transmitted, place high demands on the data processing systems. If a participating system wants to perform live analyses on the incoming data streams, it must be able to process the incoming data at least as fast as the continuous data stream delivers it. If this is not the case, the system falls further and further behind in processing and thus in its analyses. This also applies to Predictive Maintenance systems, especially if they use complex and computationally intensive machine learning models. If sufficiently scalable hardware resources are available, this may not be a problem at first. However, if this is not the case or if the processing takes place on decentralised units with limited hardware resources (e.g. edge devices), the runtime behaviour and resource requirements of the type of neural network used can become an important criterion. This thesis addresses Predictive Maintenance systems in IIoT environments using neural networks and Deep Learning, where the runtime behaviour and the resource requirements are relevant. The question is whether it is possible to achieve better runtimes with similarly result quality using a new type of neural network. The focus is on reducing the complexity of the network and improving its parallelisability. Inspired by projects in which complexity was distributed to less complex neural subnetworks by upstream measures, two hypotheses presented in this thesis emerged: a) the distribution of complexity into simpler subnetworks leads to faster processing overall, despite the overhead this creates, and b) if a neural cell has a deeper internal structure, this leads to a less complex network. Within the framework of a qualitative study, an overall impression of Predictive Maintenance applications in IIoT environments using neural networks was developed. Based on the findings, a novel model layout was developed named Sliced Long Short-Term Memory Neural Network (SlicedLSTM). The SlicedLSTM implements the assumptions made in the aforementioned hypotheses in its inner model architecture. Within the framework of a quantitative study, the runtime behaviour of the SlicedLSTM was compared with that of a reference model in the form of laboratory tests. The study uses synthetically generated data from a NASA project to predict failures of modules of aircraft gas turbines. The dataset contains 1,414 multivariate time series with 104,897 samples of test data and 160,360 samples of training data. As a result, it could be proven for the specific application and the data used that the SlicedLSTM delivers faster processing times with similar result accuracy and thus clearly outperforms the reference model in this respect. The hypotheses about the influence of complexity in the internal structure of the neuronal cells were confirmed by the study carried out in the context of this thesis

    Developing Tools For Probing Stellar Interiors With Asteroseismology

    Get PDF
    Asteroseismology is the study of stellar oscillations. Recent space missions, such as CoRoT, Kepler, and TESS, are rapidly revolutionising the field by collecting vast amounts of data. These data have enabled accurate characterisation of stellar oscillations for a wide range of stars, leading to improved understanding of stellar physics and knowledge of Galactic and planetary populations. This thesis builds on existing tools and develops new techniques to advance our understanding of stars using their oscillations. Firstly, we investigate 36 subgiants observed by Kepler, measuring their oscillation parameters and extracting their frequencies, amplitudes and linewidths. They are used as modelling input to derive accurate stellar parameters. Secondly, we measure the core and envelope rotation rates for these subgiants, and study them as a function of stellar properties. We find near solid-body rotation in early subgiants and differential rotation in later stages. Thirdly, we evaluate the intrinsic scatter of the asteroseismic scaling relations, using the sharpness of population-level features that are naturally formed by stars. We constrain the intrinsic scatter to be a few percent. Fourthly, we propose a new method to correct the stellar surface effect, which involves prescribing the surface effect as a function of stellar surface parameters. This method reduces the scatter of model-derived stellar properties and provides a revised correction for the Dnu scaling relation. Fifthly, we test the numax scaling relation by comparing observed numax with model-inferred scaling numax constrained by individual frequencies. We conclude no noticeable deviation of the numax scaling relation and a lack of metallicity dependency. Lastly, we construct a mass-radius diagram for red clump stars, leading to the discovery of two new types of post-mass-transfer stars. The new finding offers exciting opportunities to study binary evolution using asteroseismology

    AI-based design methodologies for hot form quench (HFQ®)

    Get PDF
    This thesis aims to develop advanced design methodologies that fully exploit the capabilities of the Hot Form Quench (HFQ®) stamping process in stamping complex geometric features in high-strength aluminium alloy structural components. While previous research has focused on material models for FE simulations, these simulations are not suitable for early-phase design due to their high computational cost and expertise requirements. This project has two main objectives: first, to develop design guidelines for the early-stage design phase; and second, to create a machine learning-based platform that can optimise 3D geometries under hot stamping constraints, for both early and late-stage design. With these methodologies, the aim is to facilitate the incorporation of HFQ capabilities into component geometry design, enabling the full realisation of its benefits. To achieve the objectives of this project, two main efforts were undertaken. Firstly, the analysis of aluminium alloys for stamping deep corners was simplified by identifying the effects of corner geometry and material characteristics on post-form thinning distribution. New equation sets were proposed to model trends and design maps were created to guide component design at early stages. Secondly, a platform was developed to optimise 3D geometries for stamping, using deep learning technologies to incorporate manufacturing capabilities. This platform combined two neural networks: a geometry generator based on Signed Distance Functions (SDFs), and an image-based manufacturability surrogate model. The platform used gradient-based techniques to update the inputs to the geometry generator based on the surrogate model's manufacturability information. The effectiveness of the platform was demonstrated on two geometry classes, Corners and Bulkheads, with five case studies conducted to optimise under post-stamped thinning constraints. Results showed that the platform allowed for free morphing of complex geometries, leading to significant improvements in component quality. The research outcomes represent a significant contribution to the field of technologically advanced manufacturing methods and offer promising avenues for future research. The developed methodologies provide practical solutions for designers to identify optimal component geometries, ensuring manufacturing feasibility and reducing design development time and costs. The potential applications of these methodologies extend to real-world industrial settings and can significantly contribute to the continued advancement of the manufacturing sector.Open Acces

    Proceedings of SIRM 2023 - The 15th European Conference on Rotordynamics

    Get PDF
    It was our great honor and pleasure to host the SIRM Conference after 2003 and 2011 for the third time in Darmstadt. Rotordynamics covers a huge variety of different applications and challenges which are all in the scope of this conference. The conference was opened with a keynote lecture given by Rainer Nordmann, one of the three founders of SIRM “Schwingungen in rotierenden Maschinen”. In total 53 papers passed our strict review process and were presented. This impressively shows that rotordynamics is relevant as ever. These contributions cover a very wide spectrum of session topics: fluid bearings and seals; air foil bearings; magnetic bearings; rotor blade interaction; rotor fluid interactions; unbalance and balancing; vibrations in turbomachines; vibration control; instability; electrical machines; monitoring, identification and diagnosis; advanced numerical tools and nonlinearities as well as general rotordynamics. The international character of the conference has been significantly enhanced by the Scientific Board since the 14th SIRM resulting on one hand in an expanded Scientific Committee which meanwhile consists of 31 members from 13 different European countries and on the other hand in the new name “European Conference on Rotordynamics”. This new international profile has also been emphasized by participants of the 15th SIRM coming from 17 different countries out of three continents. We experienced a vital discussion and dialogue between industry and academia at the conference where roughly one third of the papers were presented by industry and two thirds by academia being an excellent basis to follow a bidirectional transfer what we call xchange at Technical University of Darmstadt. At this point we also want to give our special thanks to the eleven industry sponsors for their great support of the conference. On behalf of the Darmstadt Local Committee I welcome you to read the papers of the 15th SIRM giving you further insight into the topics and presentations

    Efficient Deep Learning for Real-time Classification of Astronomical Transients

    Get PDF
    A new golden age in astronomy is upon us, dominated by data. Large astronomical surveys are broadcasting unprecedented rates of information, demanding machine learning as a critical component in modern scientific pipelines to handle the deluge of data. The upcoming Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will raise the big-data bar for time- domain astronomy, with an expected 10 million alerts per-night, and generating many petabytes of data over the lifetime of the survey. Fast and efficient classification algorithms that can operate in real-time, yet robustly and accurately, are needed for time-critical events where additional resources can be sought for follow-up analyses. In order to handle such data, state-of-the-art deep learning architectures coupled with tools that leverage modern hardware accelerators are essential. The work contained in this thesis seeks to address the big-data challenges of LSST by proposing novel efficient deep learning architectures for multivariate time-series classification that can provide state-of-the-art classification of astronomical transients at a fraction of the computational costs of other deep learning approaches. This thesis introduces the depthwise-separable convolution and the notion of convolutional embeddings to the task of time-series classification for gains in classification performance that are achieved with far fewer model parameters than similar methods. It also introduces the attention mechanism to time-series classification that improves performance even further still, with significant improvement in computational efficiency, as well as further reduction in model size. Finally, this thesis pioneers the use of modern model compression techniques to the field of photometric classification for efficient deep learning deployment. These insights informed the final architecture which was deployed in a live production machine learning system, demonstrating the capability to operate efficiently and robustly in real-time, at LSST scale and beyond, ready for the new era of data intensive astronomy

    Development, Implementation, and Optimization of a Modern, Subsonic/Supersonic Panel Method

    Get PDF
    In the early stages of aircraft design, engineers consider many different design concepts, examining the trade-offs between different component arrangements and sizes, thrust and power requirements, etc. Because so many different designs are considered, it is best in the early stages of design to use simulation tools that are fast; accuracy is secondary. A common simulation tool for early design and analysis is the panel method. Panel methods were first developed in the 1950s and 1960s with the advent of modern computers. Despite being reasonably accurate and very fast, their development was abandoned in the late 1980s in favor of more complex and accurate simulation methods. The panel methods developed in the 1980s are still in use by aircraft designers today because of their accuracy and speed. However, they are cumbersome to use and limited in applicability. The purpose of this work is to reexamine panel methods in a modern context. In particular, this work focuses on the application of panel methods to supersonic aircraft (a supersonic aircraft is one that flies faster than the speed of sound). Various aspects of the panel method, including the distributions of the unknown flow variables on the surface of the aircraft and efficiently solving for these unknowns, are discussed. Trade-offs between alternative formulations are examined and recommendations given. This work also serves to bring together, clarify, and condense much of the literature previously published regarding panel methods so as to assist future developers of panel methods

    Leveraging elasticity theory to calculate cell forces: From analytical insights to machine learning

    Get PDF
    Living cells possess capabilities to detect and respond to mechanical features of their surroundings. In traction force microscopy, the traction of cells on an elastic substrate is made visible by observing substrate deformation as measured by the movement of embedded marker beads. Describing the substrates by means of elasticity theory, we can calculate the adhesive forces, improving our understanding of cellular function and behavior. In this dissertation, I combine analytical solutions with numerical methods and machine learning techniques to improve traction prediction in a range of experimental applications. I describe how to include the normal traction component in regularization-based Fourier approaches, which I apply to experimental data. I compare the dominant strategies for traction reconstruction, the direct method and inverse, regularization-based approaches and find, that the latter are more precise while the former is more stress resilient to noise. I find that a point-force based reconstruction can be used to study the force balance evolution in response to microneedle pulling showing a transition from a dipolar into a monopolar force arrangement. Finally, I show how a conditional invertible neural network not only reconstructs adhesive areas more localized, but also reveals spatial correlations and variations in reliability of traction reconstructions
    corecore