988 research outputs found

    Vector spaces of linearizations for matrix polynomials: A bivariate polynomial approach

    Get PDF
    We revisit the important paper [D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 971-1004] and, by viewing matrices as coefficients for bivariate polynomials, we provide concise proofs for key properties of linearizations for matrix polynomials. We also show that every pencil in the double ansatz space is intrinsically connected to a Bézout matrix, which we use to prove the eigenvalue exclusion theorem. In addition our exposition allows for any degree-graded basis, the monomials being a special case. MATLAB code is given to construct the pencils in the double ansatz space for matrix polynomials expressed in any orthogonal basis

    A framework for structured linearizations of matrix polynomials in various bases

    Full text link
    We present a framework for the construction of linearizations for scalar and matrix polynomials based on dual bases which, in the case of orthogonal polynomials, can be described by the associated recurrence relations. The framework provides an extension of the classical linearization theory for polynomials expressed in non-monomial bases and allows to represent polynomials expressed in product families, that is as a linear combination of elements of the form ϕi(λ)ψj(λ)\phi_i(\lambda) \psi_j(\lambda), where {ϕi(λ)}\{ \phi_i(\lambda) \} and {ψj(λ)}\{ \psi_j(\lambda) \} can either be polynomial bases or polynomial families which satisfy some mild assumptions. We show that this general construction can be used for many different purposes. Among them, we show how to linearize sums of polynomials and rational functions expressed in different bases. As an example, this allows to look for intersections of functions interpolated on different nodes without converting them to the same basis. We then provide some constructions for structured linearizations for ⋆\star-even and ⋆\star-palindromic matrix polynomials. The extensions of these constructions to ⋆\star-odd and ⋆\star-antipalindromic of odd degree is discussed and follows immediately from the previous results
    • …
    corecore