194 research outputs found

    On Multiple Description Coding of Sources with Memory

    Full text link

    Time and frequency domain algorithms for speech coding

    Get PDF
    The promise of digital hardware economies (due to recent advances in VLSI technology), has focussed much attention on more complex and sophisticated speech coding algorithms which offer improved quality at relatively low bit rates. This thesis describes the results (obtained from computer simulations) of research into various efficient (time and frequency domain) speech encoders operating at a transmission bit rate of 16 Kbps. In the time domain, Adaptive Differential Pulse Code Modulation (ADPCM) systems employing both forward and backward adaptive prediction were examined. A number of algorithms were proposed and evaluated, including several variants of the Stochastic Approximation Predictor (SAP). A Backward Block Adaptive (BBA) predictor was also developed and found to outperform the conventional stochastic methods, even though its complexity in terms of signal processing requirements is lower. A simplified Adaptive Predictive Coder (APC) employing a single tap pitch predictor considered next provided a slight improvement in performance over ADPCM, but with rather greater complexity. The ultimate test of any speech coding system is the perceptual performance of the received speech. Recent research has indicated that this may be enhanced by suitable control of the noise spectrum according to the theory of auditory masking. Various noise shaping ADPCM configurations were examined, and it was demonstrated that a proposed pre-/post-filtering arrangement which exploits advantageously the predictor-quantizer interaction, leads to the best subjective performance in both forward and backward prediction systems. Adaptive quantization is instrumental to the performance of ADPCM systems. Both the forward adaptive quantizer (AQF) and the backward oneword memory adaptation (AQJ) were examined. In addition, a novel method of decreasing quantization noise in ADPCM-AQJ coders, which involves the application of correction to the decoded speech samples, provided reduced output noise across the spectrum, with considerable high frequency noise suppression. More powerful (and inevitably more complex) frequency domain speech coders such as the Adaptive Transform Coder (ATC) and the Sub-band Coder (SBC) offer good quality speech at 16 Kbps. To reduce complexity and coding delay, whilst retaining the advantage of sub-band coding, a novel transform based split-band coder (TSBC) was developed and found to compare closely in performance with the SBC. To prevent the heavy side information requirement associated with a large number of bands in split-band coding schemes from impairing coding accuracy, without forgoing the efficiency provided by adaptive bit allocation, a method employing AQJs to code the sub-band signals together with vector quantization of the bit allocation patterns was also proposed. Finally, 'pipeline' methods of bit allocation and step size estimation (using the Fast Fourier Transform (FFT) on the input signal) were examined. Such methods, although less accurate, are nevertheless useful in limiting coding delay associated with SRC schemes employing Quadrature Mirror Filters (QMF)

    Global Maximum Likelihood Decoding with Hidden Markov Models

    Get PDF
    This thesis presents a summary of research in areas related to speech communications on degraded channels using very low data rate (VLR) digital voice coders. Background is presented on the nature of voice encoding, problems encountered with real world communications channels and some traditional solutions to these problems. Recent developments which use the Hidden Markov Model (HMM) and Vector Quantization (VQ) to enhance performance are reviewed. A proposal for a new channel decoding technique is then presented. This proposed technique uses the Hidden Markov Model in conjunction with a VLR voice encoder using Vector Quantization. It performs globally maximum likelihood estimates of received vectors over the joint region of received channel signals and possible vector decisions. Finally experimental results which are based on a simulation of the concept are presented.Electrical Engineerin

    MSAT-X: A technical introduction and status report

    Get PDF
    A technical introduction and status report for the Mobile Satellite Experiment (MSAT-X) program is presented. The concepts of a Mobile Satellite System (MSS) and its unique challenges are introduced. MSAT-X's role and objectives are delineated with focus on its achievements. An outline of MSS design philosophy is followed by a presentation and analysis of the MSAT-X results, which are cast in a broader context of an MSS. The current phase of MSAT-X has focused notably on the ground segment of MSS. The accomplishments in the four critical technology areas of vehicle antennas, modem and mobile terminal design, speech coding, and networking are presented. A concise evolutionary trace is incorporated in each area to elucidate the rationale leading to the current design choices. The findings in the area of propagation channel modeling are also summarized and their impact on system design discussed. To facilitate the assessment of the MSAT-X results, technology and subsystem recommendations are also included and integrated with a quantitative first-generation MSS design

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Combined Industry, Space and Earth Science Data Compression Workshop

    Get PDF
    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems

    Proceedings of the Mobile Satellite Conference

    Get PDF
    A satellite-based mobile communications system provides voice and data communications to mobile users over a vast geographic area. The technical and service characteristics of mobile satellite systems (MSSs) are presented and form an in-depth view of the current MSS status at the system and subsystem levels. Major emphasis is placed on developments, current and future, in the following critical MSS technology areas: vehicle antennas, networking, modulation and coding, speech compression, channel characterization, space segment technology and MSS experiments. Also, the mobile satellite communications needs of government agencies are addressed, as is the MSS potential to fulfill them

    Perceptual models in speech quality assessment and coding

    Get PDF
    The ever-increasing demand for good communications/toll quality speech has created a renewed interest into the perceptual impact of rate compression. Two general areas are investigated in this work, namely speech quality assessment and speech coding. In the field of speech quality assessment, a model is developed which simulates the processing stages of the peripheral auditory system. At the output of the model a "running" auditory spectrum is obtained. This represents the auditory (spectral) equivalent of any acoustic sound such as speech. Auditory spectra from coded speech segments serve as inputs to a second model. This model simulates the information centre in the brain which performs the speech quality assessment. [Continues.

    High-performance compression of visual information - A tutorial review - Part I : Still Pictures

    Get PDF
    Digital images have become an important source of information in the modern world of communication systems. In their raw form, digital images require a tremendous amount of memory. Many research efforts have been devoted to the problem of image compression in the last two decades. Two different compression categories must be distinguished: lossless and lossy. Lossless compression is achieved if no distortion is introduced in the coded image. Applications requiring this type of compression include medical imaging and satellite photography. For applications such as video telephony or multimedia applications, some loss of information is usually tolerated in exchange for a high compression ratio. In this two-part paper, the major building blocks of image coding schemes are overviewed. Part I covers still image coding, and Part II covers motion picture sequences. In this first part, still image coding schemes have been classified into predictive, block transform, and multiresolution approaches. Predictive methods are suited to lossless and low-compression applications. Transform-based coding schemes achieve higher compression ratios for lossy compression but suffer from blocking artifacts at high-compression ratios. Multiresolution approaches are suited for lossy as well for lossless compression. At lossy high-compression ratios, the typical artifact visible in the reconstructed images is the ringing effect. New applications in a multimedia environment drove the need for new functionalities of the image coding schemes. For that purpose, second-generation coding techniques segment the image into semantically meaningful parts. Therefore, parts of these methods have been adapted to work for arbitrarily shaped regions. In order to add another functionality, such as progressive transmission of the information, specific quantization algorithms must be defined. A final step in the compression scheme is achieved by the codeword assignment. Finally, coding results are presented which compare stateof- the-art techniques for lossy and lossless compression. The different artifacts of each technique are highlighted and discussed. Also, the possibility of progressive transmission is illustrated

    Proceedings of the Scientific Data Compression Workshop

    Get PDF
    Continuing advances in space and Earth science requires increasing amounts of data to be gathered from spaceborne sensors. NASA expects to launch sensors during the next two decades which will be capable of producing an aggregate of 1500 Megabits per second if operated simultaneously. Such high data rates cause stresses in all aspects of end-to-end data systems. Technologies and techniques are needed to relieve such stresses. Potential solutions to the massive data rate problems are: data editing, greater transmission bandwidths, higher density and faster media, and data compression. Through four subpanels on Science Payload Operations, Multispectral Imaging, Microwave Remote Sensing and Science Data Management, recommendations were made for research in data compression and scientific data applications to space platforms
    corecore